Tezin Türü: Yüksek Lisans
Tezin Yürütüldüğü Kurum: İstanbul Ticaret Üniversitesi, Fen Bilimleri Enstitüsü, Türkiye
Tezin Onay Tarihi: 2017
Tezin Dili: Türkçe
Öğrenci: YASEMİN BAHAR YÜCEL
Danışman: BAĞDATLI KALKAN SEDA
Özet:Sınıflama ve Regresyon Ağaçları (SRA) varsayım gerektirmeyen istatistiksel tekniklerdir. SRA, bağımlı değişkenin kategorik olması durumunda sınfılama ağacı, bağımlı değişkenin sürekli olması durumunda ise regresyon ağacı ismini almaktadır. SRA; bağımsız değişkenler ve bağımlı değişken arasındaki anlamlı ilişkilerin modelini ağaç şeklindeki göstermektedir. Kolay yorumlanması, büyük veri setlerine uygulanması ve varsayım gerektirmemesinden dolayı son zamanlarda sıkça kullanılan tekniklerdir. Sınıflama veya Regresyon Ağacı oluşturan; Classification and Regression Tree (CART) ve Chi-square Automed Interaction Detection (CHAID) algoritmalarının en önemli özellikleri, sürekli ve kategorik verileri aynı anda modele dahil edebilmesi, bağımlı değişkenler üzerinde etkili olan bağımsız değişken(ler)i bir ağaç diyagramı üzerinde kolayca anlaşılabilir gösterebilmesi olarak özetlenebilmektedir. Bu çalışmanın amacı, Türkiye'deki kişilerin mutluluk düzeylerini etkileyen faktörlerin sınıflama ve regresyon ağaçları ile belirlenmesidir. Hem sınıflama hem de regresyon ağaçlarında CART ve CHAID algoritmaları kullanılarak bu faktörlerin belirlenmesi amaçlanmıştır. Ayrıca, sınıflama ve regresyon ağaçları için farklı başlangıç ve test verileri kullanılarak ağaçlar oluşturulmuş, aralarındaki farklılıklar incelenmiş ve sonuçlar karşılaştırmalı olarak yorumlanmıştır.