Fast diffusion equations on riemannian manifolds


Bakim S., Goldstein G. R., Goldstein J. A., KÖMBE İ.

Differential and Integral Equations, cilt.33, sa.9-10, ss.527-554, 2020 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 33 Sayı: 9-10
  • Basım Tarihi: 2020
  • Dergi Adı: Differential and Integral Equations
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH
  • Sayfa Sayıları: ss.527-554
  • İstanbul Ticaret Üniversitesi Adresli: Evet

Özet

In the present paper, we first study the nonexistence of positive solutions of the following nonlinear parabolic problem u u∂u∂t((x, x = t0)) ∆ = = g(0 u u 0m() x) + ≥ V 0 (x)um + λuq in Ω × (0, T), in Ω, on ∂Ω × (0, T). Here, Ω is a bounded domain with smooth boundary in a complete non-compact Riemannian manifold M, 0 < m < 1, V ∈ L1loc(Ω), q > 0 and λ ∈ R. Next, we prove some Hardy and Leray type inequalities with remainders on a Riemannian Manifold M. Furthermore, we obtain explicit (sometimes optimal) constants for these inequalities and present several nonexistence results with help of Hardy and Leray type inequalities on the hyperbolic space Hn.