
 
 

 

 
 

GRADUATE SCHOOL OF SCIENCES 
 
 
 

 
 
 

A LIGHTWEIGHT CRYPTOGRAPHY ALGORITHM FOR SMART 
CITIES AND IOT 

 
 
 
 
 

Ahmed Mohsin Abed AL-JANABI 

 
 
 
 
 
 

Supervisor 
Asst. Prof. Dr. Ali BOYACI 

 
 
 
 
 
 
 
 

MASTER THESIS 
COMPUTER ENGINEERING DEPARTMENT 

ISTANBUL – 2020  



 
 

ACCEPTANCE AND APPROVAL PAGE 
 
 

On 30/01/2020, Ahmed Mohsin Abed AL-JANABI successfully defended the 
thesis, entitled “A Lightweight Cryptography Algoraithm for Smart Cities 
and IoT”, which he prepared after fulfilling the requirements specified in the 
associated legislation, before the jury members whose signatures are listed 
below. This thesis is accepted as a Master’s Thesis by Istanbul Commerce 
University, Graduate School of Natural and Applied Sciences Computer 
Engineering Department. 
 
 
 
Supervisor  Asst. Prof. Dr. Ali BOYACI   …………………. 

Istanbul Commerce University      
 
 
Jury Member Asst. Prof. Dr. Metin TURAN  …………………... 

Istanbul Commerce University      
 
 
Jury Member Asst. Prof. Dr. Zeynep TURGUT  ………………….. 

Haliç University                          
 
 
 
 
 
 
 
 
 
Approval Date: 19.02.2020 
 
 
İstanbul Ticaret Üniversitesi, Fen Bilimleri Enstitüsünün 19.02.2020 Tarih ve 

2020/281 numaralı Yönetim Kurulu Kararının 12. maddesi gereği ders yüklerini ve 

tez yükümlülüğünü yerine getirdiği belirlenen “AHMED MOHSIN ABED AL-

JANABI” (TC: 99587864174) adlı öğrencinin mezun olmasına oy birliği ile karar 

verilmiştir. 

 

 

Prof. Dr. Necip ŞİMŞEK 
Acting Head of Graduate School of Natural and Applied Sciences 
  



 
 

ACADEMIC AND ETHICAL RULES 
DECLARATION OF CONFORMITY 

 
 
In this thesis I prepared in accordance with the rules of thesis writing, Istanbul 
Commerce University, Institute of Science, 
 

•  I obtained all the information and documents in the thesis within the 
framework of academic rules. 

 
• I present all visual, audio and written information and results in 

accordance with scientific moral rules. 
 
•   I refer to the related works in accordance with scientific norms in 

case of using others' works. 
 
•   I cited all the works I cited as a source. 
 
•   I did not make any distortions in the data used. 
 
•   and that I do not present any part of this thesis as another thesis 

study at this university or another university. 
 

I declare. 
                                                                                                 
 
 
 

19.02.2020 
 

 

Ahmed Mohsin Abed AL-JANABI 
 
 

 



i 
 

CONTENTS 
 
                                                                                                                                                 Page 
CONTENTS...................................................................................................................................       i 
ABSTRACT ...................................................................................................................................     iii 
ÖZET ..............................................................................................................................................     iv 
ACKNOWLEDGEMENT ...........................................................................................................      v 
FIGURES .......................................................................................................................................    vi 
TABLES  ........................................................................................................................................   vii 
SYMBOLS AND ABBREVIATIONS .......................................................................................  viii 
1. INTRODUCTION ....................................................................................................................      1 

1.1. Smart Cities and Internet of Things (IoT) .........................................................      1 
1.1.1. Smart cities ..........................................................................................................      1 
1.1.2. Internet of things (IoT) ...................................................................................      3 
1.1.3. Challenges ............................................................................................................      5 

1.2. Cyber Security and Cryptography ........................................................................      7 
1.2.1. Cyber security .....................................................................................................      7 
1.2.2. Cryptography ......................................................................................................      9 
1.2.3. Lightweight cryptography .............................................................................    12 

2. REVIEW OF THE LITERATURE .......................................................................................    13 
3. PROPOSED ALGORITHM AND ENCRYPTION ............................................................    16 

3.1. Proposed Algorithm and Encryption ..................................................................    16 
3.2. Analysis of Proposed Algorithm and Encryption ...........................................    28 

3.2.1. Linear and differential cryptanalysis .........................................................    28 
3.2.2. Correlation coefficient analysis....................................................................    28 
3.2.3. Information entropy analysis .......................................................................    30 
3.2.4. Histogram analysis............................................................................................    30 
3.2.5. Key space analysis .............................................................................................    32 
3.2.6. Related keys .........................................................................................................    32 
3.2.7. Interpolation attacks ........................................................................................    32 
3.2.8. Other analyzes ....................................................................................................    32 

4. RESEARCH FINDINGS AND DISCUTION ......................................................................    34 
5. CONCLUSION AND IMPLICATIONS ...............................................................................    38 
REFERENCES ..............................................................................................................................    40 
APPENDICES ...............................................................................................................................    43 

AP A. Matlab Code for Main Function for Proposed Algorithm ........................    43 
AP B. Matlab Code for Subkey Generator Function ...............................................    46 
AP C. Matlab Code for Encryption Function .............................................................    51 
AP D. Matlab Code for Decryption Function .............................................................    55 
AP E. Matlab Code for Scalling Function ....................................................................    60 
AP F. Matlab Code for P Function..................................................................................    61 
AP G. Matlab Code for Q Function .................................................................................    62 
AP H. Matlab Code for Function 1 .................................................................................    63 
AP I. Matlab Code for Function 2 ...................................................................................    64 
AP J. Matlab Code for Function 3 ...................................................................................    65 
AP K. Matlab Code for Function 4 .................................................................................    66 
AP L. Matlab Code for Function of Convert Binary to Decimal ..........................    67 
AP M. Matlab Code for Function of Convert to Binary ..........................................    68 
AP N. Matlab Code for Function of Convert Decimal to Binary .........................    69 



ii 
 

AP O. Matlab Code for Function of Convert Hexadecimal to Binary ...............    70 
AP P. Matlab Code for Function 2 of Convert Hexadecimal to Binary ............    71 

BIBLIOGRAPHY .........................................................................................................................    72 

 
  



iii 
 

ABSTRACT 
 

Master Thesis 
 

A LIGHTWEIGHT CRYPTOGRAPHY ALGORITHM FOR SMART CITIES AND 
IOT 

 
Ahmed Mohsin Abed AL-JANABI 

 
Istanbul Commerce University 

Graduate School Of Sciences And Engineering 
Computer Engineering Department 

 
Supervisor: Asst. Prof. Dr. Ali BOYACI 

 

2020, 72 Pages 

 
 

Cybersecurity is very important and is more important in smart cities, where 
that uses different types of electronic Internet of things (IoT) sensors to collect 
data from citizens, devices, and assets that are processed and analyzed to 
monitor and manage traffic and transportation systems, Energy, water 
networks, waste and environment management, crime detection, information 
systems, schools, libraries, hospitals, and other community services. All these 
services are subject to threats, risks, manipulation, and control of data through 
different environments such as software, networks, and devices, including 
sensors, especially as the sensors have limited specifications such as memory 
and energy used, they need protection, taking into account these specifications. 
One of the most important measures to protect data and information is 
encryption, but in the sensors, we need lightweight encryption due to its limited 
specifications. There are many cryptographic algorithms and despite the 
strength of the security level in some of them, but we need more improvements 
and development in the algorithms to increase the level of security and taking 
into account other specifications such as speed and the level of memory and 
energy consumption. In this thesis, we have created a new lightweight 
cryptography algorithm by developing and making some improvements to 
another algorithm to be more efficient and more sensitive to sensor features 
and advanced security to make Smart Cities and IoT more secure. 
 
 
 
Key Words: Cryptography, cyber security, internet of things, IoT, lightweight 
cryptography, sensor, smart cities, wireless sensor network. 
 



iv 
 

ÖZET 
 

Yüksek Lisans Tezi 
 

AKILLI ŞEHİRLER VE IOT İÇİN BİR HAFİF KRİPTOGRAFİ ALGORİTMASI 
 

Ahmed Mohsin Abed AL-JANABI 
 

İstanbul Ticaret Üniversitesi 
Fen Bilimleri Enstitüsü 

Bilgisayar Mühendisliği Anabilim Dalı 
 

Danışman: Dr. Öğr. Üyesi Ali BOYACI 
 

2020, 72 sayfa 
 

Siber güvenlik çok önemlidir ve trafik ve ulaşım sistemlerini izlemek ve 
yönetmek için işlenen ve analiz edilen vatandaşlardan, cihazlardan ve 
varlıklardan veri toplamak için farklı türde elektronik İnternet (IoT) 
sensörlerini kullanan akıllı şehirlerde daha önemlidir, Enerji, su ağları, atık ve 
çevre yönetimi, suç tespiti, bilgi sistemleri, okullar, kütüphaneler, hastaneler ve 
diğer toplum hizmetleri. Tüm bu hizmetler, özellikle sensörler kullanılan bellek 
ve enerji gibi sınırlı özelliklere sahip olduğundan, korumaya ihtiyaç duyulan 
yazılımlar, ağlar ve cihazlar gibi farklı ortamlar aracılığıyla verilerin 
tehditlerine, riskleri, manipülasyonuna ve kontrolüne tabidir. Verileri ve 
bilgileri korumak için en önemli önlemlerden biri şifrelemedir, ancak çünkü 
sensörlerin özellikleri sınırlıdır nedeniyle hafif şifrelemeye ihtiyacımız vardır. 
Birçok şifreleme algoritması vardır ve bazılarında güvenlik düzeyinin gücüne 
rağmen, güvenlik düzeyini artırmak ve hız, hafıza ve enerji tüketim seviyesi gibi 
diğer özellikleri dikkate almak için algoritmalarda daha fazla iyileştirmeye ve 
geliştirmeye ihtiyacımız var. Bu tezde, Akıllı Şehirler ve IoT yi daha güvenli hale 
getirmek için sensör özelliklerine daha verimli ve daha duyarlı olmak için başka 
bir algoritmada bazı iyileştirmeler geliştirerek yapmak ve geliştirerek yeni bir 
hafif şifreleme algoritması oluşturduk. 
 
 
 
Anahtar Kelimeler: Akıllı şehirler, hafif kriptografi, IoT, kablosuz sensör ağı, 
kriptografi, nesnelerin interneti, sensör, siber güvenlik. 
 

  



v 
 

ACKNOWLEDGEMENT 
 

I thank Allah ALMIGHTY, who inspired me to aspire and who has guided my 
steps. I extend my sincere thanks and gratitude to Dr. Ali BOYACI who 
supervised this work and supported me throughout my scientific research and 
this thesis. I thank all those who supported me, including my family. 
 

          
 
 

Ahmed Mohsin Abed AL-JANABİ 
ISTANBUL, 2020 

 
 

  



vi 
 

FIGURES 
 
                                                                                                                                                 Page 
Figure 1.1. Smart city ..............................................................................................................      2 
Figure 1.2. Internet of things (IoT) ....................................................................................      4 
Figure 1.3. Cryptology diagram ...........................................................................................    10 
Figure 1.4. Cryptography diagram .....................................................................................    11 
Figure 3.1. Function 1 .............................................................................................................    17 
Figure 3.2. Sub-Keys generator ...........................................................................................    22 
Figure 3.3. Function 2 .............................................................................................................    24 
Figure 3.4. Function 3 .............................................................................................................    25 
Figure 3.5. Function 4 .............................................................................................................    25 
Figure 3.6. Structure of the proposed algorithm (Encryption) ..............................    26 
Figure 3.7. Encryption images .............................................................................................    27 
Figure 3.8. Correlation of images .......................................................................................    29 
Figure 3.9. Histogram comparison.....................................................................................    31 
Figure 4.1. Bar diagram for algorithms memory consumption ..............................    35 
Figure 4.2. Plot diagram for algorithms key space ......................................................    37 

 
  



vii 
 

TABLES 
 

                                                                                                                                                Page 
Table 3.1. P table .......................................................................................................................  18 
Table 3.2. Q table.......................................................................................................................  18 
Table 4.1. Correlation and entropy analysis ..................................................................  34 
Table 4.2. Comparison between the Proposed algorithm and other  
                    algorithms...............................................................................................................  35 
Table 4.3. Average time required for exhaustive key search ..................................  36 
 
 
  



viii 
 

SYMBOLS AND ABBREVATIONS 
 
 
⨁ XOR 
⨀ XNOR 
~ NOT 
⧺ Concatenation 
≫ Right Shift 
≪ Left Shift 
 



1 
 

1. INTRODUCTION 

 
1.1.  Smart Cities and Internet of Things (IoT) 

 
1.1.1. Smart cities 

 
The expression “smart” was used to describe the individuals that fast, 

spontaneous, and reliable but not devices or lifestyles. However, in the modern 

era, the world has changed rapidly and dramatically through the development 

of technology and has become a smart term referring to smart devices, services, 

and elements that respond quickly, reliably and flexibility, as smart devices, 

smart cities, and a lot of smart elements other. 

 

There are several definitions of the smart city, and to define it simply, the smart 

city is an urban area that uses and integrates many information and 

communication technology to manage the services and resources of the city and 

help the citizens to build and modify them services flexibly, effectively and 

safely (Rassia and Pardalos, 2017). 

 

As urban populations increase, there will be great difficulties in managing 

services such as transportation, health care, education, energy, etc. To facilitate 

the management and improvement of services, Internet services should be 

developed in the cities to become smarter. Smart cities need to develop digital 

(information technology) and physical infrastructure, and activate the Internet 

of Things and smart societies (including stakeholders such as governments, 

citizens, companies and organizations) and the interaction between them 

(Dustdar, 2017). 

 

Among the most important elements in smart cities are buildings and smart 

homes, smart governance, smart society, smart transportation, smart 

healthcare, smart energy, smart industry, smart education, smart environment, 

smart agriculture, smart security, etc. In addition, there are sub-elements from 

main elements such as smart traffic systems, smart lighting, smart vehicles, 

smart car parks, smart irrigation, smart waste containers, smart home 



2 
 

appliances, and others. Figure 1.1. It illustrates some of the main elements of 

smart cities. 

 

 

Figure 1.1. Smart city 

 

A report of the United Nations on 16 May 2018 Indicates that 55% of the world 

lives in the cities and will attend to 68% in 2050, and it emphasizes that 

governments should concentration on integrated policies to improve the lives of 

both cities and rural dwellers (United Nations, 2018). In addition to the 

application of some Internet of things services in the cities, some can also be 

applied in rural areas, for example in irrigation and agriculture. 

 

There are many benefits in the trend toward urbanization and many challenges. 

Consolidating a growing population in a smaller space can help conserve 



3 
 

resources and other benefits, and will have some Challenges, as cybersecurity 

threats especially in smart cities and Internet of things applications. 

 

1.1.2. Internet of Things (IoT) 

 

The Internet of Things (IoT) describes the network of physical objects “things” 

that are embedded with sensors, software, and other technologies for the 

purpose of connecting and exchanging data with other devices and systems over 

the internet via special protocols, to achieve intelligent recognition, location, 

tracking, monitoring and management (Kim, et, al., 2017). These devices range 

from ordinary household objects to sophisticated industrial tools. 

 

The Internet of Things is spreading widely, and its application and services will 

change our lives. In 2020, it is expected that the number of Internet of Things 

devices will reach 50 billion devices, and the Internet of Things will have a 

major impact on the technology industry (Yeo, et al., 2014). 

 

The devices of the internet of things (as sensors) are highly constrained, with 

memory and available energy limited, and its requirements are strict low-cost, 

and its essential requirements are storage, processing, and analytics of IoT data 

and transform them into beneficial information (Cirani, et al., 2019). IoT devices 

are a victim of attacks due to low memory capacity, storage and processing 

capacity, and therefore the measures needed to protect them are difficult, so it is 

important to work and research on finding better solutions to protect them 

(Gurunath, et al., 2018). There are a lot of sensors and other devices and 

technologies that support and contribute significantly to the development of the 

Internet of things such as wireless sensors network (WSN) and radio-frequency 

identification (RFID), cloud computing, devices and smart phones (Aksu and 

Aydin, 2019). 

 

The components of the Internet of Things system are low energy and cost and 

need careful care in designing hardware and software, application of algorithms, 



4 
 

security and safety. The Internet of Things system is made up primarily of 

sensors, where the sensors are widespread (Serpanos and Wolf, 2018). 

 

 

Figure 1.2. Internet of things (IoT) 

 
IoT systems are used in a wide range of applications, where industrial sensors 

used to monitor industrial processes, equipment condition and product quality. 

In smart buildings, for example, sensors check the building’s condition and 

temperature to control air conditioning, heating, and ventilation, and control the 

level of lighting and the need for them to reduce operating costs and energy 

consumption, as well as sensors work to monitor the condition of structures in 

smart buildings. In addition, in smart homes, sensors monitor and control 

household appliances, such as refrigerators, air-conditioners, televisions, Food 

warmers and more. In transportation, sensors are used to monitor vehicles, fuel 

consumption, emission, roads, traffic etc. In health, the sensors in medical 

systems work to monitor patients in hospitals, in ambulances, and in doctors 

’clinics (Serpanos and Wolf, 2018).  In security, smart sensors are used in smart 



5 
 

surveillance cameras, smart locks, and emergency monitoring. In the 

environment, sensors are used to monitor waste containers, environmental 

purity, pollutants, etc. In agriculture, the sensors control the irrigation of crops 

by measuring the degree of soil moisture, are used in livestock, and perform 

other tasks. In electric power grids, sensors monitor and control energy 

consumption. In commerce, sensors work to monitor materials, goods issued, 

imported and stored, there are many applications of Internet of things that are 

used in various fields and most of the tasks performed by sensors in systems 

and applications of Internet of Things are applied in smart cities as mentioned 

previously. 

 

The new Internet of Things (IoT) applications is empowering Smart City 

activities around the world. It gives the capacity to remotely screen, oversees 

and control gadgets, and to make new bits of knowledge and noteworthy data 

from huge surges of constant information. 

 

 There are many difficulties in the development of Internet of Things 

applications that need to world keen endeavors in scholarly and industry 

research, to reach better ideas, innovations and solutions to improve and 

develop administration and services for smart cities that are highly dependent 

on the Internet of things, to overcome difficulties, challenges, risks and threats 

including cybersecurity. 

 

1.1.3. Challenges 

 

Despite the great benefits that smart cities offer to their citizens and the 

contribution of Internet of Things applications, there are also great challenges 

facing them. 

 

The new networks of sensors, data analytics and makers of decision, bring many 

challenges. in addition, a lot of devices and systems aren’t cyber resilient, posing 

a threat to the safety and security of the citizens, governments, services, data 

and information.  



6 
 

 

In 2014, researchers from the University of Michigan hacked the traffic lights of 

a hundred of the city’s intersections, proving security flaws existed that had the 

potential to cause serious accidents (University of Michigan, 2014). During 

2017, hackers turned on 156 severe sirens at midnight in the USA, Dallas, that 

causing a surge of 911 calls and distress (The Guardian, 2017). Also in the 

United States of America, some persons hacked the Jeep Cherokee car system 

away ten miles and tampered with the air conditioner, wipers of glass, radio 

sound, engine and brakes, and deflected it from the road (The Telegraph, 2015). 

Ransomware was used in the past few years to disrupt Dublin's local tram 

system in Ireland, and obstruct railway tickets systems and air traffic control in 

Stockholm, Sweden, and to shake-down plants of power from both 

Johannesburg in South Africa and Hyderabad in India (Muggah and Goodman, 

2019). 

 

There are more reasons that lead to the exposure of smart devices, applications 

and services to penetration and manipulation. Among these reasons is the use of 

devices vulnerable to infection in smart cities and the Internet of things due to 

the presence of loopholes and weak encryption, and despite the existence of a 

lot of instructions to make it safe, but it needs to be developed, Responsible 

authorities, such as companies and manufacturers, must develop devices, 

systems, networks, encryption, and manage and address vulnerabilities and 

security flaws. 

 

Security vulnerabilities may increase with the increase in the proliferation of 

Internet of Things devices, and this is an opportunity for cyber criminals to 

carry out cyber attacks, as a research for Symantec (the American company 

specialized in the field of information security) found weaknesses in 50 devices 

from commercially available devices, including a smart door lock that can be 

opened online without a password (Symantec, 2018). Internet devices that are 

not secure can serve as entry points for cyber-attacks by allowing hackers to 

tamper with devices such as reprogramming, causing malfunctions and 



7 
 

manipulating the security and integrity of information and data, so security in 

the Internet of things cannot be ignored (Oracevic, et al., 2017). 

 

Over the years, cities become smarter, but obtaining protection for the Internet 

of things determines the difference between a smart city and a secure city. 

 

Despite the tremendous benefits provided by the Internet of things and smart 

cities applications in many areas and services such as reducing energy 

consumption by controlling lighting in streets and buildings and refrigeration 

and air conditioning devices through the work of sensors and instructing them 

to switch off and operate when needed, as well as reducing noise and emissions 

in the environment and monitoring the regulation of movement traffic and 

choosing the most appropriate way for emergency response cars and many 

other benefits. But there are serious challenges in the presence of many sensors 

and the Internet of things and interconnected networks where they are the 

target of cyber-attacks, for example when a for cyber attackers to turn off smart 

electric energy, there will be severe consequences and disturbances that have 

major effects on people’s lives, all electrical powered devices, including devices 

used in hospitals to monitor, check and treat patients, will stop, and in food 

storage stores the food will be destroyed after the cooling devices have stopped, 

and surveillance cameras the security will stop, automated teller machines and 

electronic payment, or when traffic signals are compromised and tampered 

with, will cause chaos, terrible accidents, and many dangers. 

 

1.2. Cyber Security and Cryptography 

 

1.2.1. Cyber security 

 

Cyber security is protecting the confidentiality, integrity and availability of 

information-whether it is personally identifiable information, email or other of 

communication, credit card numbers, intellectual property or government 

secrets and other data, information and the services that connect through the 

internet (Singer and Friedman, 2014). 



8 
 

Confidentiality is representing keeping data private, and privacy is not just 

some social or political goal. The protection of information in the digital world is 

of the utmost importance for the value of this information. Confidentiality is 

supported by technical tools, the most important of which is encryption, in 

addition to access control and legal protections. Integrity means that the system 

and its data have not been manipulated or changed or edited without 

authorization. There must be confidence  that the system will be both available 

and behave as expected.  Availability refers to being able to use the system as 

anticipated.  It’s not merely the system going down that makes availability a 

security concern; such as that software errors and that happen to computers in 

a lot of time, and when someone tries to exploit the lack of availability in some 

way, it becomes a security issue (Kostopoulos, 2017).  

 

An attacker could be depriving users of a system that they depend on (such as 

loss of GPS that would hamper military units in conflict and other), or by merely 

threatening the loss of a system, as in a “ransomware” attack, there are many 

examples of such ransoms, where these ransoms range from hacks on individual 

bank accounts to global blackmail. 

 

Threats and cyber-attacks occur by Hackers, organized criminal, commercial 

competitors and government intelligence agencies and others.  

 

That threats and cyber-attacks are increasingly active on the internet and 

engaged in various kinds of theft, espionage, disruption and sabotage, 

manipulation and control, especially the smart city services and Internet of 

things applications are subject to serious threats. Where threaten the global 

financial systems, environment, traffic control systems, electrical power grids, 

nuclear power plants telecommunications systems, healthcare systems and 

more from applications of smart cities and internet of things. Cyber espionage is 

a pervasive epidemic; and even the smart companies and government 

institutions in the world have terabytes of intellectual property and financial 

assets being lost annually via the Internet, with cybercrime the fast growing in 

the world, in some segments growing 300 percent per year, cyber-crimes are 



9 
 

responsible for more than $1 trillion USD in stolen funds and other assets 

(Mowbray, 2014). 

 

Therefore, the cybersecurity effective is a critical capability for the defense and 

preservation of societies and the services. 

 

Among the most important factors that contribute to cyber security is protect 

data and information in all environments such as networks and devices and 

others. Here comes the biggest role for cryptography, that include encryption of 

data and information to prevent intruders and unauthorized to see or tamper 

with or control, because of the disclosure of data and information by people It is 

very dangerous because some data is very sensitive, especially with the 

development and spread of the Internet of things in smart cities and in many 

fields, but sensors for the Internet of things have limited specifications such as 

the size of memory and limited energy, so they require lightweight 

cryptography algorithms to take into account their specifications and work with 

high efficiency, and it needs to be lightweight algorithms with high-level of 

security. 

 

1.2.2. Cryptography 

 

Cryptology (Cryptology includes Cryptography and Cryptanalysis as in figure 

1.3) was born among Arabs (Kahn, 1996). Many Arab and Muslim Scientists and 

philosophers who used cryptography and cryptanalysis and authored books 

about it for hundreds of years, Such as the famous scientist and philosopher Al-

Kindi (he was born around 801 A.D. and was raised in Baghdad, Iraq) and others 

(Broemeling, 2012). 

 

Cryptanalysis is the science of cryptography analysis and sometimes the art of 

breaking cryptosystems.  

 

Cryptography is hiding messages and information to deny access unauthorized 

accessed. 



10 
 

 

Figure 1. 3. Cryptology diagram  
 

Cryptography includes Symmetric cryptography and asymmetric cryptography 

and hash function. Where hash function it is a coding method that is usually 

used in protocols, and it computes the message digest for short and fixed-length 

bits, Symmetric cryptography uses one key for encryption and decryption and it 

includes two types (block cipher and stream cipher), while Asymmetric 

cryptography uses two public and private keys (Paar and Pelzl, 2010). The 

figure 1.4 show cryptography diagram. 



11 
 

 

Figure 1.4. Cryptography diagram  

 

Cryptography has been used for a long time, is very important, and has been 

used in World War II. Today, encryption is used in many fields, services and 

applications, including in communications, mobile applications, credit cards, 

business and government websites, banking systems and in many fields, and has 

become more important with Internet applications, things and smart city 

services where everything is working in cyberspace. 

 

Symmetric algorithms mean using the same key in encryption and decryption, 

while Asymmetric algorithm means using two keys (Public key and privet key) 

public key for encryption and privet key for decryption, and Cryptographic 

Protocols are dealing with the application of cryptographic algorithms, like hash 

functions (Paar and Pelzl, 2010). 

 

From symmetric algorithms, block cipher and stream cipher, a stream cipher is 

that encrypts a digital data stream one bit or one byte at one time and a block 

cipher uses a block of plaintext as a whole and used to produce an cipher text 

block of equal length, for example a block size 64 bits or 128 bits (Stallings, 

2011), like AES and DES, and others algorithms. 



12 
 

In this thesis, we will talk about block cipher, and we will dedicate part about 

block cipher algorithms and specifically lightweight cryptographic algorithms, 

because it is used to secure Internet of things (secure the sensors) and smart 

cities. 

 

1.2.3. Lightweight cryptography 

 

The lightweight Cryptography algorithms designed to work in many highly 

restrictive environments (ex. sensor networks, healthcare, distributed control 

systems, Internet of things, and electronic physical systems) where they use low 

power and will use circuits much more limited than those on the simplest 

mobile phones. These devices are usually connected to each other wirelessly to 

work in coordination to accomplish some tasks. Because cryptographic 

algorithms designed for desktop environments and servers, most of them are 

not compatible with restricted devices (NIST, 2017). 

 

When using a small computing power should be using lightweight cryptography 

algorithm to secure it, so can use lightweight block ciphers, lightweight stream 

ciphers or lightweight hash function. As for the lightweight block ciphers, there 

are many algorithms, we include many of its below according to the design of 

the structure. 

 

Substitution-Permutation Network (AES, KLEIN, LED, Midori, Mysterion, 

SKINNY, Zorro, Fantomas, Robin, Noekeon, PRIDE, Rectangle, mCrypton, 

MANTIS, PRESENT, PRINCE, SPARX and others). Feistel Networks (Chaskey 

Cipher, HIGHT, LEA, RC5, SIMECK, SIMON, SPECK, XTEA, DESLX, GOST revisited, 

ITUbee, KASUMI, MISTY, LBlock, RoadRunneR, SEA, CLEFIA, Piccolo, TWINE and 

others), Other Designs (KTANTAN, KATAN and others) (CryptoLUX Wiki, 2017). 

Despite the abundance of algorithms and the efficiency of some of them, it still 

needs to develop, improve and search for better algorithms and solutions 

because of the difficulty of obtaining the required level of security in the 

lightweight cryptography algorithms to take into account the specifications of 

the restricted devices at the same time. 



13 
 

2. REVIEW OF THE LITERATURE 

 

There are more cryptography algorithms and despite the strength of some of 

them, but they still need improvements to improve their efficiency, because of 

its importance and the difficulty of obtaining the maximum efficiency because 

many features must be considered at the same time as security and speed and 

energy consumption especially in lightweight cryptography algorithms. 

 

Can increase of the security level for the cryptography algorithms by increasing 

the size of the block, the size of the key or the number of rounds (Stallings, 

2010), but sometimes negatively affecting its speed and consumption of energy 

and memory. In addition to increasing the block size, key size and number of 

rounds that lead to increase the security level, the design of the algorithm's 

structure, function and generator of sub keys and operators play a very large 

role in the strength level of the algorithm's security. 

 

Can improve the strength of certain algorithms by making some changes and 

improvements, for example, Triple DES or 3DES algorithm derived from the DES 

algorithm by adding some changes and improvements such as increasing the 

size of the key or other changes that would lead to an increase in the strength of 

the algorithm. As an example of lightweight algorithms is the case for the TEA 

(Tiny Encryption Algorithm) and XTEA (Extended Tiny Encryption Algorithm), 

XXTEA.  TEA and XTEA is a Feistel cipher with 64-bit block, 128-bit key and 64 

rounds, but there are some differences, including a more complex key-schedule, 

XORs, other additions and rearrangement of the shifts’ Also, and XXTEA 

algorithm is a Feistel cipher with 64-bit block, 128-bit key and also contains 

some changes. 

 

In block cipher, some algorithms use Feistel structure where the Block is split 

into two halves and their size is equal in the balanced algorithms like DES, 

Simon and others, and in two different sizes in the unbalanced algorithms as in 

the Skipjack algorithm, XXTEA and others. One of the major advantage of using 

Feistel structure is that the encryption and decryption operations are almost 



14 
 

same.  Some other algorithms use SPN structure (Substitution-Permutation 

network), such as AES and present and prince and others, several alternating 

rounds of substitution and permutation lead to the confusion and spread of 

Shannon properties that require changing the encryption text in a pseudo-

random way (Usman, 2017).  

 

There is an algorithm (SIT algorithm with key size 64 bit, block size 64 bit and 

five rounds), it is a mixture based on Feistel and SP networks. Thus making use 

of the advantages of both approaches to develop a lightweight algorithm that 

presents more security in the IoT environment while keeping the computational 

complexity at a moderate level (Usman, 2017). 

 

Although the SIT algorithm is designed to reduce power and memory 

consumption and increase speed, it needs to improve some processes add 

operations that are more complex, in the structure and sub-key generator and 

increase of key size, to increase of security level with taking into account the 

consumption of energy and memory on the same time. 

 

To be the cryptography algorithms more secure, the key size must be at least 

128 bits as studies suggest in recent years from the National Institute of 

Standards and Technology, NIST (Barker, 2016). In addition to when the key 

size larger, the key space will be larger and more resistant against brute force 

attack. 

 

The proposed algorithm in this article like SIT algorithm but with the key size 

128 bit and block size 64 bit and nine rounds, and added many operations for 

algorithm structure and sub-key generator and add other functions. And from 

the operations that added, operations that used in TEA XTEA XXTEA algorithms 

like shift operation and Delta number, Delta is the golden number or 9E3779B9 

(Andem, 2003; Maitra, and Yelamarthi, 2019).  

 

We made the improvements above to make it more complex and efficiency and 

more secure, and according to the analyzes, studies and comparisons in the next 



15 
 

chapter about the proposed algorithm, that it is more secure and more efficient 

compared with other algorithms. 

  



16 
 

3. PROPOSED ALGORITHM 

 

3.1. Proposed Algorithm and Encryption 

 

The proposed algorithm is a lightweight encryption algorithm with a block size 

equal 64-bit, key size equal 128-bit and number of rounds is nine. The proposed 

algorithm is a mixture of Feistel structure and SPN structure (Substitution-

Permutation network). 

 

Some algorithms have the size of sub-keys equal to the size of the main keys and 

some algorithms have the main key size different from the sub-keys sizes, in the 

proposed algorithm have sub-keys size is different from the master key size 

where the size of the sub-keys is 16 bits while the key size is 128-bit. 

 

The main key divided into eight segments, then each segment equal 16 bit and 

each one divided to eight sub-segments, each sub-segment equal to two bits, this 

means we have 64 sub-segments of 2 bits, and through the substitution of 

segments, we will get on new eight segments, as shown in the following 

equations and figure (3.2). 

 

Where S means a segment, s means a sub-segment.  

𝑆a = s1 ⧺ s2 ⧺ s17 ⧺ s18 ⧺ s33 ⧺ s34 ⧺ s49 ⧺ s50                                                        (3.1) 

𝑆b = s9 ⧺ s10 ⧺ s25 ⧺ s26 ⧺ s41 ⧺ s42 ⧺ s57 ⧺ s58                                                      (3.2) 

𝑆c = s3 ⧺ s11 ⧺ s19 ⧺ s27 ⧺ s35 ⧺ s43 ⧺ s51 ⧺ s59                                                      (3.3) 

𝑆d = s4 ⧺ s12 ⧺ s20 ⧺ s28 ⧺ s36 ⧺ s44 ⧺ s52 ⧺ s60                                                      (3.4) 

𝑆e = s5 ⧺ s6 ⧺ s21 ⧺ s22 ⧺ s37 ⧺ s38 ⧺ s53 ⧺ s54                                                        (3.5) 

𝑆f = s13 ⧺ s14 ⧺ s29 ⧺ s30 ⧺ s45 ⧺ s46 ⧺ s61 ⧺ s62                                                     (3.6) 

𝑆b = s7 ⧺ s15 ⧺ s23 ⧺ s31 ⧺ s39 ⧺ s47 ⧺ s55 ⧺ s63                                                      (3.7) 

𝑆b = s8 ⧺ s16 ⧺ s24 ⧺ s32 ⧺ s40 ⧺ s48 ⧺ s56 ⧺ s64                                                      (3.8) 

 

After producing eight segments the Function 1 used for the segments, the 

functions has special design and depends on P and Q tables show figure 3.1, the 

transformations made by P and Q are shown in the tables 1 and 2. 



17 
 

𝐾ai f  = f(𝑆i )                                                                                                                           (3.9) 

Where i = (a, b, c, d, e, f, g, h) 

 

The next step is to get 𝐾ai f  by passing the 16-bits of Si  to the function1 as 

shown in equation (3.9).  

 

 

 

Figure 3.1. Function 1  

 

In the function 1 (Figure 3.1), P and Q, each one represents four bits, the arrows 

indicate the location distribution of the bits in the sixteen bites, Where the 

location of the bits in the P in function 1 is according to their distribution in the 

job and according to the P table, and the location of the bits in the Q in function 

1 is according to their distribution in the job and according to the Q table. In 

addition to the function 2, function 3 and function 4, it works with the same 

principle. For example, the first bit in function 1 is equal to 3 according to table 

P, then after moving to Q in the first function, it is equal to 6 according to the 

table Q, where the number 6 corresponds to the number 3 and after moving to P 

in function 1 it is equal to B according to table P, then the B corresponds to 6, 

and so on for the others of the bits and functions. 

 



18 
 

The Function 1 applied in sub-keys generator and in algorithm structure 

(Encryption structure), while the functions 2, 3 and 4 applied in Encryption 

structure only. 

 

The tables and functions perform to linear and non-linear transformations for 

the bits to get confusion and diffusion. See table 1 and 2. The tables P and Q as S-

Box (Substitution box) for the bits of sub-blocks and sub-keys through the 

functions.  

 
Table 3.1. P table 

 

𝑆i  0 1 2 3 4 5 6 7 8 9 A B C D E F 

P(𝑆i ) 3 F E 0 5 4 B C D A 9 6 7 8 2 1 

 

Table 3.2. Q table 

 

𝑺i  0 1 2 3 4 5 6 7 8 9 A B C D E F 

Q(𝑺i ) 9 E 5 6 A 2 3 C F 0 4 D 7 B 1 8 

 

The output (a, b, c, d, e, f, g, h) of each function is arranged in a 4×4 matrix 

named M shown next, but some operations are applied to some functions before 

arranging them in the matrixes, as in equations (3.10, 3.11, 3.12 and 3.13). 

 

bs = 𝑏 ≪ 4                                                                                                                        (3.10) 

ds = 𝑑 ≫ 8                                                                                                                         (3.11) 

fs = 𝑓 ≪ 4                                                                                                                         (3.12) 

hs = ℎ ≫ 8                                                                                                                         (3.13) 

𝑀a = 

[
 
 
 
𝐾a1f1       
𝐾a1f5        

𝐾a1f2        
𝐾a1f6         

𝐾a1f3      
𝐾a1f7       

𝐾a1f4

𝐾a1f8 

𝐾a1f9        
𝐾a1f13       

𝐾a1f10    
𝐾a1f14     

   𝐾a1f11

   𝐾a1f15
     

𝐾a1f12

𝐾a1f16]
 
 
 
                                                            (3.14) 

𝑀b = 

[
 
 
 
𝐾a2 f1       
𝐾a2f5        

𝐾a2f2        
𝐾a2f6         

𝐾a2f3      
𝐾a2f7       

𝐾a2f4

𝐾a2f8 

𝐾a2f9        
𝐾a2f13       

𝐾a2f10    
𝐾a2f14     

   𝐾a2f11

   𝐾a2f15
     

𝐾a2f12

𝐾a2f16 ]
 
 
 
                                                           (3.15) 



19 
 

𝑀c = 

[
 
 
 
𝐾a3 f1       
𝐾a3f5        

𝐾a3f2        
𝐾a3f6         

𝐾a3f3      
𝐾a3f7       

𝐾a3f4

𝐾a3f8 

𝐾a3f9        
𝐾a3f13       

𝐾a3f10    
𝐾a3f14     

   𝐾a3f11

   𝐾a3f15
     

𝐾a3f12

𝐾a3f16 ]
 
 
 
                                                            (3.16) 

𝑀d = 

[
 
 
 
𝐾a4 f1       
𝐾a4f5        

𝐾a4f2        
𝐾a4f6         

𝐾a4f3      
𝐾a4f7       

𝐾a4f4

𝐾a4f8 

𝐾a4f9        
𝐾a4f13       

𝐾a4f10    
𝐾a4f14     

   𝐾a4f11

   𝐾a4f15
     

𝐾a4f12

𝐾a4f16 ]
 
 
 
                                                           (3.17) 

𝑀e = 

[
 
 
 
𝐾a5f1       
𝐾a5f5        

𝐾a5f2        
𝐾a5f6         

𝐾a5f3      
𝐾a5f7       

𝐾a5f4

𝐾a5f8 

𝐾a5f9        
𝐾a5f13       

𝐾a5f10    
𝐾a5f14     

   𝐾a5f11

   𝐾a5f15
     

𝐾a5f12

𝐾a5f16]
 
 
 
                                                            (3.18) 

𝑀f = 

[
 
 
 
𝐾a6 f1       
𝐾a6f5        

𝐾a6f2        
𝐾a6f6         

𝐾a6f3      
𝐾a6f7       

𝐾a6f4

𝐾a6f8 

𝐾a6f9        
𝐾a6f13       

𝐾a6f10    
𝐾a6f14     

   𝐾a6f11

   𝐾a6f15
     

𝐾a6f12

𝐾a6f16 ]
 
 
 
                                                            (3.19) 

𝑀g = 

[
 
 
 
𝐾a7 f1       
𝐾a7f5        

𝐾a7f2        
𝐾a7f6         

𝐾a7f3      
𝐾a7f7       

𝐾a7f4

𝐾a7f8 

𝐾a7f9        
𝐾a7f13       

𝐾a7f10    
𝐾a7f14     

   𝐾a7f11

   𝐾a7f15
     

𝐾a7f12

𝐾a7f16 ]
 
 
 
                                                           (3.20) 

𝑀h = 

[
 
 
 
𝐾a8 f1       
𝐾a8f5        

𝐾a8f2        
𝐾a8f6         

𝐾a8f3      
𝐾a8f7       

𝐾a8f4

𝐾a8f8 

𝐾a8f9        
𝐾a8f13       

𝐾a8f10    
𝐾a8f14     

   𝐾a8f11

   𝐾a8f15
     

𝐾a8f12

𝐾a8f16 ]
 
 
 
                                                           (3.21) 

 

Then apply on XNOR on matrix 𝑀a and opposite it, and apply XOR on matrix 𝑀h 

and opposite it as follow equations. That to make the sub-keys more complexity 

and more independent and from this sub-keys, K9 because those sub-keys 

shared by creating sub-key nine.   

 

𝑀a2  = (𝑀a ⊕ 𝑀a)                                                                                                           (3.22) 

𝑀h2  = 𝑀h ⊕ 𝑀h                                                                                                               (3.23) 

 

To obtain the matrices are transformed into eight arrays of 16 bits, the 

arrangement of these bits are shown in next equations. 

 

 A = a4 ⧺ a3 ⧺ a2 ⧺ a1 ⧺ a5 ⧺ a6 ⧺ a7 ⧺ a8 ⧺ a12 ⧺ a11 ⧺ a10 ⧺ a9 ⧺  a13 ⧺ a14 ⧺

a15 ⧺ a16                                                                                                                              (3.24)  



20 
 

B = b1 ⧺ b5 ⧺ b9 ⧺ b13 ⧺ b14 ⧺ b10 ⧺ b6 ⧺ b2 ⧺ b3 ⧺ b7 ⧺ b11 ⧺ b15 ⧺ b16 ⧺

b12 ⧺ b8 ⧺ b4                                                                                                                     (3.25)  

C =  c1 ⧺ c2 ⧺ c3 ⧺ c4 ⧺ c8 ⧺ c7 ⧺ c6  ⧺ c5 ⧺ c9 ⧺ c10 ⧺ c11 ⧺ c12 ⧺ c16  ⧺ c15 ⧺

c14 ⧺ c13                                                                                                                              (3.26)   

D =  d13 ⧺ d9 ⧺ d5 ⧺ d1 ⧺ d2 ⧺ d6 ⧺ d10 ⧺ d14 ⧺ d15 ⧺ d11 ⧺ d7 ⧺ d3 ⧺ d4 ⧺

d8 ⧺ d12 ⧺ d16                                                                                                                   (3.27)   

 E =  e4 ⧺ e3 ⧺ e2 ⧺ e1 ⧺ e5 ⧺ e6 ⧺ e7 ⧺ e8 ⧺ e12 ⧺ e11 ⧺ e10 ⧺ e9 ⧺ e13 ⧺ e14 ⧺

e15 ⧺ e16                                                                                                                              (3.28)   

F =  f1 ⧺ f5 ⧺ f9 ⧺ f13 ⧺ f14 ⧺ f10 ⧺ f6 ⧺ f2 ⧺  f3  ⧺  f7  ⧺  f11 ⧺ f15 ⧺ f16 ⧺

f12 ⧺ f8 ⧺ f4                                                                                                                       (3.29)  

G =  g
1
⧺ g

2
⧺ g

3
⧺ g

4
⧺ g

8
⧺ g

7
⧺ g

6
⧺ g

5
⧺ g

9
⧺ g

10
⧺ g

11
⧺ g

12
⧺ g

16
⧺ g

15
⧺

g
14

⧺ g
13

                                                                                                                              (3.30)   

H =  h13 ⧺ h9 ⧺ h5 ⧺ h1 ⧺ h2 ⧺ h6 ⧺ h10 ⧺ h14 ⧺ h15 ⧺ h11 ⧺ h7 ⧺ h3 ⧺ h4 ⧺

h8 ⧺ h12 ⧺ h16                                                                                                                   (3.31)   

 

From next equations, we will get on sub-keys (K1, K3, K5, K7), through shift five 

bits to the right for previous arrays (A, C, E, G), we will get on sub-keys (K2, K4, 

K6, K8) through shift nine bits to the left for previous arrays (B, D, F, H). Then 

we will get on sub key nine (K9), by use XOR of shift five bits to the left for T1 

(Equation 3.40) and shift nine bits to the right for T2 (Equation 3.41), where T1 

equal XOR of K1 opposite (NOT) and D, T2 equal XOR of K5 and NOT of H. where 

K1 means sub-key 1 and K2 means sub-key 2 and so on with the others sub-

keys. 

 

K1 = 𝐴 ≫ 5                                                                                                                       (3.32) 

K2 = 𝐵 ≪ 9                                                                                                                       (3.33) 

K3 = 𝐶 ≫ 5                                                                                                                       (3.34) 

K4 = 𝐷 ≪ 9                                                                                                                      (3.35) 

K5 = 𝐸 ≫ 5                                                                                                                      (3.36) 

K6 = 𝐹 ≪ 9                                                                                                                       (3.37) 

K7 = 𝐺 ≫ 5                                                                                                                       (3.38) 

K8 = 𝐻 ≪ 9                                                                                                                      (3.39) 

 



21 
 

The ninth sub-key or K9 is obtained through some operations as shown in the 

following equations:  

T1 = 𝐾1 ⊕ 𝐷                                                                                                                    (3.40) 

T2 = 𝐾5 ⊕ 𝐻                                                                                                                    (3.41) 

K9 = (𝑇1 ≪ 5) ⊕ (𝑇2 ≫ 9)                                                                                        (3.42) 

 

So we get the ninth sub-key (K9) through the equations 3.40, 3.41 and 3.42, to 

make the sub-key 9 more independent from other sub-keys. In the next figure 

(Figure 3.2) we will see the details how getting of sub-keys and the operations 

that share to produce it through the sub-keys generator. 

 



22 
 

 

Figure 3.2. Sub-Keys generator 
 

From the above, we saw how creating nine sub-keys from the main key. In the 

next equations, we will explain the algorithm structure and encryption. 

 



23 
 

In the begin, the main block divided to four blocks (each block equal 16 bits) 

and each block divided to eight sub-blocks (each block equal two bits), this 

means we have 32 sub-blocks of two bits, then produce six blocks through next 

equations. 

 

Where B means Block, b means sub-block. 

 

𝐵𝑎1 = b26 ⧺ b18 ⧺ b10 ⧺ b2 ⧺ b32 ⧺ b24 ⧺ b16 ⧺ b8                                             (3.43) 

𝐵𝑏1 = b30 ⧺ b22 ⧺ b14 ⧺ b6 ⧺ b30 ⧺ b22 ⧺ b14 ⧺ b6                                             (3.44) 

𝐵𝑐1 = b29 ⧺ b21 ⧺ b13 ⧺ b5 ⧺ b29 ⧺ b21 ⧺ b13 ⧺ b5                                              (3.45) 

𝐵𝑑1 = b28 ⧺ b20 ⧺ b12 ⧺ b4 ⧺ b28 ⧺ b20 ⧺ b12 ⧺ b4                                             (3.46) 

𝐵𝑒1 = b27 ⧺ b19 ⧺ b11 ⧺ b3 ⧺ b27 ⧺ b19 ⧺ b11 ⧺ b3                                              (3.47) 

𝐵𝑓1 = b25 ⧺ b17 ⧺ b9 ⧺ b1 ⧺ b31 ⧺ b23 ⧺ b15 ⧺ b7                                                (3.48) 

 

Then in every round, will be obtained new blocks through the following 

equations. 

 

Where 𝐹1= Function1. 

𝐵𝑎2 = (𝐵𝑎1 ≫ 5) ⊕ 𝐾1                                                                                                 (3.49) 

𝐵𝑏2 = (𝐵𝑏1 ⊕ 𝐾1) ⊕ 𝐷𝑒𝑙𝑡𝑎                                                                                         (3.50) 

𝐵𝑐2 = 𝐹1(𝐵𝑏1 ⊕ 𝐾1) ⊕ 𝐵𝑑1                                                                                        (3.51) 

𝐵𝑑2 = (𝐹1(𝐵𝑒1 ⊕ 𝐾1) ⊕ 𝐵𝑐2) ⊕ 𝐷𝑒𝑙𝑡𝑎                                                                   (3.52) 

𝐵𝑒2 = (𝐵𝑒1 ⊕ 𝐾1)                                                                                                           (3.53) 

𝐵𝑓2 = (𝐵𝑓1 ≫ 5) ⊕ (K1 ⊕ 𝐷𝑒𝑙𝑡𝑎)                                                                             (3.54) 

 

After nine rounds, there are some operations to get on the block cipher from 

this operations, three functions (Function 1, Function 2, Function 3, Function 4) 

, show the next equations and figure 3.6.  

 

Where BC = block cipher, 𝐹1= Function1, 𝐹2 = Function2, 𝐹3= Function3 and 𝐹4= 

Function4. 

𝐵1 = 𝐹1(𝐵𝑓10)                                                                                                                    (3.55) 



24 
 

𝐵2 = 𝐹4(𝐵𝑏10) ⊕ 𝐹2(𝐵𝑐10)                                                                                            (3.56) 

𝐵3 = 𝐹1(𝐵𝑑10) ⊕ 𝐹3(𝐵𝑒10)                                                                                            (3.57) 

𝐵4 = 𝐹1(𝐵𝑎10)                                                                                                                   (3.58) 

𝐵𝐶 = 𝐵2 ⧺ 𝐵3 ⧺ 𝐵1 ⧺ 𝐵4                                                                                                (3.59) 

 

 

 

Figure 3.3. Function 2  

 
Function 2 (Figure 3.3), applied in the last steps in encryption structure for 

proposed algorithm, where it is applied on the third block in the result of the 

ninth round, and function 1 (Figure 3.1) applied on the fourth block and on the 

sixth block in the result of the ninth round, a see figure 3.6.  



25 
 

 

 

Figure 3.4. Function 3  
 

 

 

Figure 3.5. Function 4 
 

Function 3 (Figure 3.4) applied on the fifth block in result of the ninth round, 

and Function 4 (Figure 3.5) applied on the first block and on the second block in 

result of the ninth round. 



26 
 

 

 

Figure 3.6. Structure of the proposed algorithm (Encryption) 

 
In the encryption structure for the proposed algorithm in above figure, show the 

rounds and the steps before the rounds and after the rounds. 



27 
 

Image (a)                          Original                                      Encrypted 

 

Image (b)                          Original                                      Encrypted 

 

Image (c)                          Original                                      Encrypted 

 

 

Figure 3.7. Encryption images 
 

In figure 3.7 show three images (a, b and c) before encryption (The original 

images) and after encryption (The encrypted images) by use the proposed 

algorithm. 

 

 

 

 



28 
 

3.2. Analysis of Proposed Algorithm and Encryption 

 

3.2.1 Linear and differential cryptanalysis 

 

In the proposed algorithm, the tables 1 and 2 (P and Q), and the functions 1, 2, 3 

and 4 are inspired by (Barreto P. S. L. M., Rijmen V., 2000) whose cryptanalysis 

shows in the complete cipher that differential and linear attacks do not have the 

success.  where the input and output correlation is so large if the linear 

approximation is done for two rounds, Also, the round transformation is 

preserved uniform, that treats every bit in a similar way and provides resistance 

against differential attacks. 

 
3.2.2. Correlation coefficient analysis 
 

A correlation is a statistical measure of the relationship between two variables, 

and it ranges between +1 and –1. positive one which that means that variables 

move in the one direction along which means an ideal correlation, whereas zero 

implies that there's no relationship between the variables and if negative one 

refers to an ideal indirect correlation, which means that one variable goes up, 

the other goes down.  

 

In the encryption of images means the result of the correlation that the closer to 

zero (if positive or Negative), that relationship between the encrypted image 

and the original image is weaker and this means that the level of encryption 

stronger. If that the result of the correlation farther away from zero, whether 

negative or positive means that the relationship between the original image and 

encrypted image stronger this means that the encryption level is weaker. If that 

result of correlation equal zero this means there is no relationship between the 

original and encrypted image and refers to the best level of encryption 

(Ramasamy, 2019). 

 

CR =
cov(X,Y)

√𝐷(𝑋) √𝐷(𝑌)
                                                                                                             (3.60) 

cov(X, Y) =
1

256
∑  256

1 (𝑋 −  𝐸(𝑋))(𝑌𝑖 −  𝐸(𝑌))                                                       (3.61) 



29 
 

Where X and Y are the pixels and neighboring pixels of the original and 

encrypted image, cov(X,Y) is the covariance between X and Y, D(X) is the 

variance of X, and E(X) is the expected value of X. 

  
Image (a)                          Original                                      Encrypted 

 

Image (b)                          Original                                      Encrypted 

 

Image (c)                          Original                                      Encrypted 

 

 

Figure 3.8. Correlation of images 
 

The relationship between the encoded and original images in the figure above is 

very weak, this is inversely proportional to the strength of the encryption. 

 

 



30 
 

3.2.3. Information entropy analysis 

 
The entropy of information estimates the uncertainty of a random variable. 

When the entropy applied to evaluate image encryption, the larger value of 

entropy refers to a greater level of security, and it is secure from a brute force 

attack when an entropy value that is very close to a perfect value of 8 

(Ramasamy, 2019). 

 

E = ∑  P(i)log (
1

P(i)
)

255

𝑖=0
                                                                                                (3.62) 

 

Where E is Entropy, P(i) is the probability of the presence of pixel i. 

 
3.2.4. Histogram analysis 

 

The histogram of the image is a graphical and statistical representation for the 

distribution of pixel values information. The histogram of the perfect encrypted 

image must be a uniformly distributed and fully different in comparison with 

the original image, to prevent extract any information from the histogram for 

the encrypted image (Abdullah and Abdullah, 2017). 

 

In the histogram, the image is highly random and highly resistant against the 

statistical attacks if the intensity of the pixels is uniformly distributed. 

(Maddodi, et al., 2018). 

 

 

 

 

 

 

 



31 
 

Image (a)                   Original                                             Encrypted 

 

Image (b)                   Original                                             Encrypted 

 

Image (c)                   Original                                             Encrypted 

 

 

Figure 3.9. Histogram comparison  

 
In the histogram comparison, we notice a large difference in the distribution of 

data between the original and encrypted images, and this indicates the 

encryption strength.  

 

 

 

 



32 
 

3.2.5. Key space analysis 

 

Key space means number of bits that used to encrypt image, and for good 

encryption, that key space should be as large as possible to repulse brute force 

attack. Key space size means the total number of different keys of the same 

number of bits used for encryption (Kaur and Sharma, 2013). For high security, 

the key space should be greater than 2100 (Askar, et al., 2018). In proposed 

algorithm key size = 128-bit and according to equation (3.63) the key space is = 

2128 this mean key space size is good to repulse brute force attack.  Where Ks= 

Key space, Kz= Key size. 

 

Ks = 2𝐾𝑧                                                                                                                              (3.63) 

 

3.2.6. Related keys 

 

Through performing cipher operations and by using unknown or partially 

known keys can be made an attack. The related key attack predominately 

depends on having symmetry in key expansion block or upon either slow 

diffusion in the proposed algorithm, the sub-keys process is designed for fast 

and non-linear diffusion to the difference of the main key and sub-keys. 

 

3.2.7. Interpolation attacks 

 

Dependent these attacks on the simple structures for the cipher components 

that may yield a rationalistic expression with a handy intricacy. In the proposed 

algorithm, the S-box expression for along with the diffusion layer makes this 

type of attack impractical. 

 

3.2.8. Other analyzes 

 

There are important things that must be taken into account in the lightweight 

cryptography algorithms (the speed or processing time, the amount of memory 

and energy consumption of the algorithm during data encryption operations) as 



33 
 

the proposed algorithm was designed to suit Internet of things environments. 

The memory and energy consumption are directly proportional as well as with 

the time and speed. 

  



34 
 

4. RESEARCH FINDINGS AND DISCUSSION 

 
Through some analysis for the proposed algorithm, where the simulations were 

performed on a desktop computer with Intel(R) Core(TM) i7 CPU L 620 @2.00 

GHz., 4GB RAM., and Windows 10 Professional operating system, and by using 

MATLAB R2015a. In addition to some other algorithms on FELICS (Rana et al., 

2018). We get the results in next tables (4.1, 4.2 and 4.3) and figures (4.1 and 

4.2). 

 
Table 4.1. Correlation and entropy analysis 

 
 

Image 
 

Size 
Correlation Entropy 

Original 
image 

Encrypted 
image 

Original 
image 

Encrypted 
image 

a 256 x 256 0.9744 0.0001 7.4509 7.9976 
b 256 x 256 0.8198 0.0013 7.2316 7.9972 
c 256 x 256 0.9811 -0.0005 7.4938 7.9971 

 

In table 4.1 correlation of encrypted image for image (a) is it reaches the closest 

level to zero, as well as the correlation of other encrypted images. It is very close 

to zero, meaning that the relationship between the original and encrypted 

images is almost non-existent. This indicates that the level of encryption and 

security is very high. The results of entropy analysis for the encrypted images 

for (a, b and c) in the above table, also refer to the highest level for encryption 

and security, where the values of entropy closest to eight. 

 

In the table 4.2, the Block size and key size are in bits, while the code size and 

RAM are in bytes. We note that the level of memory consumption of the 

proposed algorithm is less than other algorithms that has a key size of 128 and 

less than some other algorithms that have a key size less than 128. 

 

 

 

 

 



35 
 

Table 4.2. Comparison between the proposed algorithm and other algorithms 

 
The 

Algorithm 
Block Size Key Size Round

s 
Code Size RAM 

PRESENT 64 80 32 1738 274 
Simon 64 96 42 1370 188 
Speck 64 96 26 2552 124 

SIT 64 64 5 826 22 
AES 128 128 10 23090 720 
LEA 128 128 24 3700 432 
RC5 64 128 20 20044 360 

HIGHT 64 128 32 13476 288 
Proposed 64 128 9 823 144 

 

 
 

Figure 4.1. Bar diagram for algorithms memory consumption 

 
From the bar diagram for algorithms memory consumption, we see that the 

proposed algorithm come in the third level of memory consumption after the 

SIT and Speck algorithms, and the algorithms that have a 128-bit key size in 

addition to the PRESENT algorithm. 

 



36 
 

The time required for the encryption process for the proposed algorithm is 

0.063691437 seconds. This refers that the proposed algorithm is fast in the 

encryption process, and the execution time it is good for a lightweight 

cryptography algorithm.  

 
Table 4.3. Average time required for exhaustive key search 

 
The 

Algorithm 
Key 
Size 

Number of 
Alternative Keys 

(Key Space) 

Time Required at 1 
Decryption/μs 

Time Required 
at 106 

Decryptions/μs 
PRESENT 80 280=1.2 ∗ 1024 279μs = 

1.91542738 ∗ 213 
years 

19154273.8       y
ears 

Simon 96 296=
7.92281625 ∗

1028 

295μs = 
1.25529448 ∗ 1018 

years 

1.25529448 ∗
1012 years 

Speck 96 296

= 7.92281625
∗ 1028 

295μs = 
1.25529448 ∗ 1018 

years 

1.25529448 ∗
1012 years 

SIT 64 264=
1.84467441 ∗

1019 

263μs = 292271021 

years 
292.271021     ye

ars 

AES 128 2128=3.4 ∗ 1038 2127μs = 5.4 ∗ 1024 
years 

5.4 ∗ 1018 years 

LEA 128 2128=3.4 ∗ 1038 2127μs = 5.4 ∗ 1024 
years 

5.4 ∗ 1018 years 

RC5 128 2128=3.4 ∗ 1038 2127μs = 5.4 ∗ 1024 
years 

5.4 ∗ 1018 years 

HIGHT 128 2128=3.4 ∗ 1038 2127μs = 5.4 ∗ 1024 
years 

5.4 ∗ 1018 years 

Proposed 128 2128=3.4 ∗ 1038 2127μs = 5.4 ∗ 1024 
years 

5.4 ∗ 1018 years 

 

We see in the above those algorithms (AES, LEA, RC5, HIGHT and Proposed) 

Average Time Required for Exhaustive Key Search is so long time, because the 

key size of these algorithms is large and contributes to increasing the level of 

security of the algorithms and is sufficient to repel the brute force attack. 

 

In the following figure, the key space for those algorithms that have a 128-bit 

key size (AES, LEA, RC5, HIGHT, and Proposed) are highly valued. Whereas, 

algorithms that have a key size less than 128 bits appear at a low value for the 

key space. 



37 
 

 

Figure 4.2 Plot diagram for algorthms key space 

 

From the results show the proposed algorithm high efficient in comparison with 

another algorithm especially with those algorithms of 128 bit.   

 

Can testing the work and performance of the algorithm in different 

environments, for example in FPGA and other devices with limited 

specifications, and further improvements can be made to the security level and 

performance of the algorithm through changes and improvements to the 

function. 

  



38 
 

5. CONCLUSION AND IMPLICATIONS 

 

Due to the need for smart cities for IoT applications, as well as the spread of 

Internet applications things in several areas, and with the increase of 

applications increases the cyber security threats, which is more dangerous in 

the Internet of things applications at level of smart cities because it is related to 

many fields and the management of many services and control and impact on 

Security, economic, environmental and other aspects. Here, improving cyber 

security is very important, including securing Internet of things sensors by 

developing and improving the lightweight cryptographic algorithms (improving 

security, taking into account other features that improve the performance Such 

as speed, power consumption and memory). In addition to the security is the 

most important factor in encryption algorithms, there are other required and 

important factors in the lightweight encryption such as the size of memory 

consumption, energy consumption and processing speed. One of the main 

benefits of the Internet of things is the ability to deploy sensors in traditionally 

inaccessible places, and here the extreme necessity of using batteries is 

required, but their energy consumption must be taken into account. where in 

the Internet of things environments, like sensors, taking into account energy 

consumption is very important, because these devices operate with limited 

energy, as they operate on the batteries, and the power consumption is 

dependent on the processing speed. As well as limited memory, where some of 

the small IoT resource constraint devices contain 8 KB of Random Access 

Memory (RAM) and the size of RAM is the factor that determines the possibility 

of implementation in the devices. Because the power is greatly dependent on 

the hardware and processing, the memory size becomes important for the 

lightness of the encryption method and for the power. In this thesis, we 

proposed a lightweight cryptography algorithm, where the results of the 

analysis show the proposed algorithm It has a high level of security, high 

processing speed, a low level of memory consumption and that is directly 

proportional to the energy consumption, that means the power consumption for 

the proposed algorithm is low. This is done by designing the structure of the 

algorithm and designing the sub-key generator in addition to the functions and 



39 
 

processes that in turn lead to increase the level of security by increasing the 

complexity of the encryption, and the same time consuming a small amount of 

memory where the best processes used in the other algorithms were used, and 

some other operations were added to the proposed algorithm. And that is 

through a lot of analyzes such as analyzing the relationship between encrypted 

images and original images, entropy analysis for encrypted image and testing 

the level of memory consumption in addition to measuring the key area of the 

algorithm. 

 

It also made the algorithm more sophisticated and more resistant to attack by 

using the substitution box, the functions used in the key generator, and the 

structure of the algorithm. 

 

The time required to implement the encryption process in the proposed 

algorithm indicates that the algorithm is of good speed and the low level of 

memory consumption with the use of a 128-bit key, its suitable for Internet of 

Things environments. 

 

Although difficult of getting on high security and low level of memory and 

energy consumption at the same time in the lightweight encryption algorithms 

because of the limited specification in the hardware and environments that 

need the lightweight encryption algorithms, the proposed algorithm and 

through studies, analyzes and results, appear that it highly efficient, and good to 

protect the Internet of Things applications and smart city services from those 

cyber attacks, manipulation, and tampering with services, information and data 

through sensors and overcoming the weakness due to its limited specifications. 

 

In the future, we are interested in the analysis and testing of security and 

performance of this algorithm in various environments related to smart cities 

and Internet of things. 

  



40 
 

REFERENCES 
 

Abdullah, H. N., Abdullah, H. A., 2017.  Image Encryption Using Hybrid Chaotic 
Map. International Conference on Current Research in Computer Science 
and Information Technology (ICCIT), IEEE, Slemani – Iraq, 26-27 April 
2017, 121-125. 

 
Aksu D., Aydin M. A., 2019. A Survey of IoT Architectural Reference Models. 

International Multi-Conference on Systems, Signals & Devices (SSD'19), 
IEEE, Istanbul, Turkey, 21-24 March 2019, 413-417. 

 
Andem, V. R., 2003. A Cryptanalysis of the Tiny Encryption Algorithm, 

University of Alabama, The Graduate School, M.Sc. Thesis, 68p, Alabama. 
 
Askar, S. S., Karawia, A. A., Al-Khedhairi, A., Al-Ammar, F. S., 1, 2018. An 

Algorithm of Image Encryption Using Logistic and Two-Dimensional 
Chaotic Economic Maps. Entropy, 21 (1), 1-17. 

 
Barker, E., 2016. National Institute of Standards and Technology. Special 

Publication, 800-57, Part 1, Revision 4. 
 
Barreto, P. S. L. M., Rijmen, V., 2000. The KHAZAD Legacy-Level Block Cipher. 

New European Schemes for Signature, Integrity and Encryption 
(NESSIE), 97, 1-20. 

 
Broemeling, L. D., 2012. An Account of Early Statistical Inference in Arab 

Cryptology. The American Statistician, 65 (4), 255-257. 
 
Cirani, S., Ferrari, G., Picone, M., Veltri, L., 2018. Internet of Things, 

Architectures, Protocols and Standards. Wiley, 408p, Hoboken, New 
Jersey, USA. 

 
CryptoLUX Wiki, 2017. Lightweight Block Ciphers, Accessed: 11.04.2017. 

https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers 
 
Dustdar, S., Nastic, S., Scekic, O., 2017. Smart Cities, The Internet of Things, 

People and Systems. Springer, 268p, Cham, Switzerland. 
 
Gurunath, R., Agarwal, M., Nandi, A., Samanta, D., 2019. An Overview: Security 

Issue in IoT Network. Proceedings of the Second International 
conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud, IEEE, 
30-31 Aug. 2018, Palladam, India, 104-107. 

 
Kahn d., 1996. The Codebreakers. Scribner, 1200p, USA. 
 
Kaur T., Sharma R., 2013. Security Definitive Parameters for Image Encryption 

Techniques. International Journal of Emerging Technology and Advanced 
Engineering, 3, 109-112. 

 



41 
 

Kim, T., Ramos, C., Mohammed, S., 2017. Smart City and IoT. Elsevier, 76, 159–
162. 

 
Kostopoulos, G., 2017. Cyberspace and Cybersecurity. Auerbach, CRC Press, 

Taylor & Francis Group, 316p, New York, USA. 
 
Maddodi, G., Awad, A., Awad, D., Awad, M., Lee, B., 2018. A new image encryption 

algorithm based on heterogeneous chaotic neural network generator and 
dna encoding. Springer, 77 (19), 24701–24725. 

 
Maitra, S., Yelamarthi, K., 2019. Rapidly Deployable IoT Architecture with Data 

Security: Implementation and Experimental Evaluation. Sensors, 19 
(2484), 1-22.  

 

Mowbray T.J., 2014. Cybersecurity: Managing Systems, Conducting Testing, and 
Investigating Intrusions. Wiley, 360p, Indiana, USA. 

 
Muggah, R., Goodman, M., 2019. The World Economic Forum. Cities are easy 

prey for cybercriminals, Here's how they can fight back. Date Accessed: 
30.09.2019. 
https://www.weforum.org/agenda/2019/09/our-cities-are-increasingly-
vulnerable-to-cyberattacks-heres-how-they-can-fight-back/ 

 
Oracevic, A., Dilek, S., Ozdemir, S., 2017. Security in Internet of Things: A Survey. 

International Symposium on Networks, Computers and Communications 
(ISNCC), IEEE Marrakech, Morocco, 16-18 May 2017, 1-6. 

 
Paar C., Pelzl J., 2010. Understanding Cryptography. Springer, 392p, Berlin, 

Germany. 
 
Ramasamy, P., Ranganathan, V., Kadry, S., Damasevicius, R., Blazauskas, T., 2019. 

An Image Encryption Scheme Based on Block Scrambling, Modified 
Zigzag Transformation and Key Generation Using Enhanced Logistic—
Tent Map. Entropy, 21 (7), 1-17. 

 
Rassia, S. TH., Pardalos, P. M. (ED), 2017. Smart City Networks: Through the 

Internet of Things. Springer, 227p, Cham, Switzerland. 
 
Rana, S., Hossain, S., Imam, H., Abul Kashem, M., 2018. An Effective Lightweight 

Cryptographic Algorithm to Secure Resource-Constrained Devices. 
(IJACSA) International Journal of Advanced Computer Science and 
Applications, 9 (11), 267-275. 

 
Serpanos, D., Wolf, M., 2018. Internet-of-Things (IoT) Systems: Architectures, 

Algorithms, Methodologies. Springer, 95p, Cham, Switzerland. 
 
Singer and Friedman, 2014. Cybersecurity and Cyberwar. Oxford University 

Press, 320p, New York. 



42 
 

Stallings M., 2011. Cryptography and Network Security: Principles and Practice. 
Pearson, 900p, New York. 

 
Symantec, 2018. 10 cyber security facts and statistics for 2018. January 2018. 

https://us.norton.com/internetsecurity-emerging-threats-10-facts-
about-todays-cybersecurity-landscape-that-you-should-know.html 

 
The Guardian, 2017. False alarms: hackers take over Dallas's 156 sirens before 

system deactivated. Date Accessed: 09.04.2017. 
https://www.theguardian.com/us-news/2017/apr/09/dallas-hackers-
sirens-alarms-emergency-system#top 

 
The National Institute of Standards and Technology (NIST), 2017. Lightweight 

Cryptography. Date Accessed: 03.01.2017.  
https://csrc.nist.gov/projects/lightweight-cryptography 

 
The Telegraph, 2015. Hacker remotely crashes Jeep from 10 miles away. Date 

Accessed:21.07.2015. 
https://www.telegraph.co.uk/news/worldnews/northamerica/usa/117
54089/Hacker-remotely-crashes-Jeep-from-10-miles-away.html 

 
United Nations, Department of Economic and Social Affairs, 2018. 2018 Revision 

of World Urbanization Prospects. Date Accessed: 16.05.2018. 
https://www.un.org/development/desa/publications/2018-revision-of-
world urbanization-prospects.html 
 

University of Michigan, College of Engineering, 2014. Researchers Demo Hack to 
Seize Control of Municipal Traffic Signal Systems. Date Accessed: 
21.08.2014. 
https://www.eecs.umich.edu/eecs/about/articles/2014/Green-Lights-
Forever.html 

 
Usman M., Ahmed, I., Aslam, M. I., Khan, S., Shah U. A., 2017. SIT: A Lightweight 

Encryption Algorithm for Secure Internet of Things, (IJACSA) 
International Journal of Advanced Computer Science and Applications, 8 
( 1), 402-411. 

 
Yeo, K. S., Chian, M. C., Ng, T. C W., and Tuan, D. A., 2014. Internet of Things: 

Trends, Challenges and Applications. International Symposium on 
Integrated Circuits (ISIC), IEEE, Singapore, 10-12 December 2014, 568-
571. 

  



43 
 

APPENDICES 
 

Appendix A. Matlab Code for Main Function for Proposed Algorithm 
 
1   clc 

2   clear all 

3   close all 

4    

5   %% Initialization 

6   Test=0; % for right key encryption 

7   %Test=1; % for key sensitivity test 

8   addpath functions 

9   Images_Path='Images\Original\'; 

10   fname={'Lena','panda','baboon'}; % filename 

11   ext='.jpg'; 

12   fid=3; % file ID 1 for lena 

13   IS =256; % Image size 

14   Data=imread(strcat(Images_Path,fname{fid},ext)); 

15   if (size(Data,3)==3) 

16       Data=rgb2gray(Data); 

17   end 

18   Data=imresize(Data,[IS IS]); % Image Size 

19    

20   [row,col]=size(Data); 

21   [Data,padding]=Scalling(Data,8); 

22   Data_binary=convert2bin(Data); 

23    

24   hex_key = 'AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'; 

25   [bin_key] = Hex2Bin( hex_key ); 

26   [K1,K2,K3,K4,K5,K6,K7,K8,K9]=SF_Key_Gen(bin_key); 

27   Original_msg=[]; 

28   encrypt_msg=[]; 

29   decrypt_msg=[]; 

30    

31   %% Encryption Process 

32   for kk=1:2 

33     for i=1:size(Data_binary,1) 

34       Original=Data_binary(i,:); 

35       tic 

36        [cipher]=SF_Encrypt 

37   (Original,K1,K2,K3,K4,K5,K6,K7,K8,K9); 

38       encryption_time(i)=toc; 

39       tK1=[K1(1:8),Original(1:8)];tK2= 

40   [Original(9:16),K2(9:16)]; 

41   tK3=[Original(17:24),K3(9:16)]; 

42   tK4=[Original(25:32),K4(9:16)]; 

43   tK5=[Original(33:40),K5(9:16)]; 

44   tK6=[Original(41:48),K6(9:16)]; 

45   tK7=[Original(49:56),K7(9:16)]; 

46   tK8=[Original(57:60),Original(57:60),K8(9:16)]; 

47   tK9=[Original(61:64),Original(61:64),K9(9:16)]; 

48       K1=tK1;K2=tK2;K3=tK3;K4=tK4;K5=tK5 

49   ;K6=tK6;K7=tK7;K8=tK8;K9=tK9; 

50        encrypt_msg(:,i)=binary2dec(cipher); 

51       cipher_data(i,:)=double(cipher); 

52       if(kk<2) 

53       Data_binary(i,:)=cipher_data(i,:); 

54       end 

55     end 

56   if (kk==1) 



44 
 

57   D=reshape(encrypt_msg,[row,col]); 

58   D=D'; 

59   [row,col]=size(D); 

60   [D,padding]=Scalling(D,8); 

61   % Data=[Data Data]; 

62   Data_binary=double(convert2bin(D)); 

63       TT=[K1,K2,K3,K4,K5,K6,K7,K8,K9]; 

64   encrypt_msg=[]; 

65   end 

66   end 

67    

68   TTT=TT; 

69   %% Decryption 

70   if (Test==1) 

71    K1(end)=~K1(end); 

72    TT=[K1,K2,K3,K4,K5,K6,K7,K8,K9]; 

73   end 

74    

75   for kk=kk:-1:1 

76   if(kk==2) 

77       K11=TT(1:16);K12=TT(17:32);K13=TT(33:48) 

78   ;K14=TT(49:64);K15=TT(65:80);K16=TT(81:96) 

79   ;K17=TT(97:112);K18=TT(113:128);K19=TT(129:144); 

80   else 

81       [K11,K12,K13,K14,K15,K16,K17,K18,K19]= 

82   SF_Key_Gen(bin_key); 

83      D=reshape(decrypt_msg,[row,col]); 

84   D=D'; 

85   [row,col]=size(D); 

86   [D,padding]=Scalling(D,8); 

87   cipher_data=double(convert2bin(D)); 

88    

89   decrypt_msg=[]; 

90   end 

91   for i=1:size(Data_binary,1) 

92       cipher=cipher_data(i,:); 

93       [plaintext]=SF_Decryption(cipher,K11,K12,K13,K14, 

94   K15,K16,K17,K18,K19); 

95       K11=[K11(1:8),plaintext(1:8)];K12= 

96   [plaintext(9:16),K12(9:16)];K13= 

97   [plaintext(17:24),K13(9:16)];K14= 

98   [plaintext(25:32),K14(9:16)];K15= 

99   [plaintext(33:40),K15(9:16)];K16= 

100   [plaintext(41:48),K16(9:16)];K17= 

101   [plaintext(49:56),K17(9:16)];K18= 

102   [plaintext(57:60),plaintext(57:60),K18(9:16)] 

103   ;K19=[plaintext(61:64),plaintext(61:64),K19(9:16)]; 

104       decrypt_msg(:,i)=binary2dec(plaintext); 

105       cipher_data(i,:)=double(plaintext); 

106   end 

107   end 

108    

109   % %% Results 

110   % 5 Original Image 

111   Original=uint8(reshape(Data,[row,col])); 

112   % 6 Encrypted Image 

113   Encrypted=uint8(reshape(encrypt_msg,[row,col])); 

114   % 7(Wrong Key Decyption (Key Sensitivity)) 

115   % %% 5 6 7 

116   figure 

117   subplot(1,3,1) 



45 
 

118   imshow(Original) 

119   title('Original') 

120   subplot(1,3,2) 

121   imshow(Encrypted) 

122   title('Encrypted') 

123   %  

124   % 8 Histogram 

125   figure 

126   subplot(2,1,1) 

127   imhist(Original); 

128   subplot(2,1,2) 

129   imhist(Encrypted); 

130    

131   % 14 Image Entropy 

132   Y=(imhist(Encrypted)+0.00001)/(row*col) 

133   ;%(length(Data)-padding); 

134   Y=-sum(Y.*log2(Y)); 

135   X=(imhist(Original)+0.00001)/(row*col) 

136   ;%(length(Data)-padding); 

137   X=-sum(X.*log2(X)); 

138   Re=[X Y] 

139   % 9 Correlation 

140   figure 

141   subplot(1,2,1) 

142   scatter(Original(1:end-1),Original(2:end),'.') 

143   axis([0 255 0 255]) 

144   subplot(1,2,2) 

145   scatter(Encrypted(1:end-1),Encrypted(2:end),'.') 

146   axis([0 255 0 255]) 

147   %  

148   display(sprintf('Total encryption time:  

149   %f',sum(encryption_time))) 

150   %  

151   display('correlation coefficient of Original image') 

152   corrcoef(double(Original(1:end-1)) 

153   ,double(Original(2:end))) 

154   display('correlation coefficient of encrypted image') 

155   corrcoef(double(Encrypted(1:end-1)) 

156   ,double(Encrypted(2:end))) 

157   % 

158   save(strcat('Images\Results\',fname{fid},'.mat')) 

  



46 
 

 

Appendix B. Matlab Code for Subkey Generator Function 
 
1   function [K1,K2,K3,K4,K5,K6,K7,K8,K9]= 

2   SF_Key_Gen(bin_key) 

3    

4   %making a cell 

5   key3= cell(9,4); 

6   %First for matrix of 16bit each 

7    

8   key3_1{1,1}=(1:16); 

9   key3_11{1,1}=(1:2); 

10   key3_12{1,1}=(3:4); 

11   key3_13{1,1}=(5:6); 

12   key3_14{1,1}=(7:8); 

13   key3_15{1,1}=(9:10); 

14   key3_16{1,1}=(11:12); 

15   key3_17{1,1}=(13:14); 

16   key3_18{1,1}=(15:16); 

17    

18   key3_1{1,2}=(17:32); 

19   key3_11{1,2}=(17:18); 

20   key3_12{1,2}=(19:20); 

21   key3_13{1,2}=(21:22); 

22   key3_14{1,2}=(23:24); 

23   key3_15{1,2}=(25:26); 

24   key3_16{1,2}=(27:28); 

25   key3_17{1,2}=(29:30); 

26   key3_18{1,2}=(31:32); 

27    

28   key3_1{1,3}=(33:48); 

29   key3_11{1,3}=(33:34); 

30   key3_12{1,3}=(35:36); 

31   key3_13{1,3}=(37:38); 

32   key3_14{1,3}=(39:40); 

33   key3_15{1,3}=(41:42); 

34   key3_16{1,3}=(43:44); 

35   key3_17{1,3}=(45:46); 

36   key3_18{1,3}=(47:48); 

37    

38   key3_1{1,4}=(49:64); 

39   key3_11{1,4}=(49:50); 

40   key3_12{1,4}=(51:52); 

41   key3_13{1,4}=(53:54); 

42   key3_14{1,4}=(55:56); 

43   key3_15{1,4}=(57:58); 

44   key3_16{1,4}=(59:60); 

45   key3_17{1,4}=(61:62); 

46   key3_18{1,4}=(63:64); 

47    

48   key3_1{1,5}=(65:80); 

49   key3_11{1,5}=(65:66); 

50   key3_12{1,5}=(67:68); 

51   key3_13{1,5}=(69:70); 

52   key3_14{1,5}=(71:72); 

53   key3_15{1,5}=(73:74); 

54   key3_16{1,5}=(75:76); 

55   key3_17{1,5}=(77:78); 

56   key3_18{1,5}=(79:80); 

57    

58   key3_1{1,6}=(81:96); 



47 
 

59   key3_11{1,6}=(81:82); 

60   key3_12{1,6}=(83:84); 

61   key3_13{1,6}=(85:86); 

62   key3_14{1,6}=(87:88); 

63   key3_15{1,6}=(89:90); 

64   key3_16{1,6}=(91:92); 

65   key3_17{1,6}=(93:94); 

66   key3_18{1,6}=(95:96); 

67    

68   key3_1{1,7}=(97:112); 

69   key3_11{1,7}=(97:98); 

70   key3_12{1,7}=(99:100); 

71   key3_13{1,7}=(101:102); 

72   key3_14{1,7}=(103:104); 

73   key3_15{1,7}=(105:106); 

74   key3_16{1,7}=(107:108); 

75   key3_17{1,7}=(109:110); 

76   key3_18{1,7}=(111:112); 

77    

78   key3_1{1,8}=(113:128); 

79   key3_11{1,8}=(113:114); 

80   key3_12{1,8}=(115:116); 

81   key3_13{1,8}=(117:118); 

82   key3_14{1,8}=(119:120); 

83   key3_15{1,8}=(121:122); 

84   key3_16{1,8}=(123:124); 

85   key3_17{1,8}=(125:126); 

86   key3_18{1,8}=(127:128); 

87    

88   key3_2{1,1}=['key3_11{1,1}' 'key3_12{1,1}'  

89   'key3_11{1,3}' 'key3_12{1,3}' 'key3_11{1,5}' 

90    'key3_12{1,5}' 'key3_11{1,7}' 'key3_12{1,7}']; 

91   key3{1,1}=f_fun(bin_key(key3_2{1,1})); 

92    

93   key3_2{1,2}=['key3_11{1,2}' 'key3_12{1,2}' 

94    'key3_11{1,4}' 'key3_12{1,4}' 'key3_11{1,6}'  

95   'key3_12{1,6}' 'key3_11{1,8}' 'key3_12{1,8}']; 

96   key31{1,2}=f_fun(bin_key(key3_2{1,2})); 

97   key32{1,2}=uint16(key31{1,2}); 

98   key3{1,2}=bitshift(key32{1,2},-4); 

99    

100   key3_2{1,3}=['key3_13{1,1}' 'key3_13{1,2}'  

101   'key3_13{1,3}' 'key3_13{1,4}' 'key3_13{1,5}'  

102   'key3_13{1,6}' 'key3_13{1,7}' 'key3_13{1,8}']; 

103   key3{1,3}=f_fun(bin_key(key3_2{1,3})); 

104    

105   key3_2{1,4}=['key3_14{1,1}' 'key3_14{1,2}'  

106   'key3_14{1,3}' 'key3_14{1,4}' 'key3_14{1,5}' 

107    'key3_14{1,6}' 'key3_14{1,7}' 'key3_14{1,8}']; 

108   key31{1,4}=f_fun(bin_key(key3_2{1,4})); 

109   key32{1,4}=uint16(key31{1,4}); 

110   key3{1,4}=bitshift(key32{1,4},8); 

111    

112   key3_2{1,5}=['key3_15{1,1}' 'key3_16{1,1}'  

113   'key3_15{1,3}' 'key3_16{1,3}' 'key3_15{1,5}' 

114    'key3_16{1,5}' 'key3_15{1,7}' 'key3_16{1,7}']; 

115   key3{1,5}=f_fun(bin_key(key3_2{1,5})); 

116    

117   key3_2{1,6}=['key3_15{1,2}' 'key3_16{1,2}'  

118   'key3_15{1,4}' 'key3_16{1,4}' 'key3_15{1,6}'  

119   'key3_16{1,6}' 'key3_15{1,7}' 'key3_16{1,8}']; 



48 
 

120   key31{1,6}=f_fun(bin_key(key3_2{1,6})); 

121   key32{1,6}=uint16(key31{1,6}); 

122   key3{1,6}=bitshift(key32{1,6},-4); 

123    

124   key3_2{1,7}=['key3_17{1,1}' 'key3_17{1,2}' 

125    'key3_17{1,3}' 'key3_17{1,4}' 'key3_17{1,5}'  

126   'key3_17{1,6}' 'key3_17{1,7}' 'key3_17{1,8}']; 

127   key3{1,7}=f_fun(bin_key(key3_2{1,7})); 

128    

129   key3_2{1,8}=['key3_18{1,1}' 'key3_18{1,2}'  

130   'key3_18{1,3}' 'key3_18{1,4}' 'key3_18{1,5}' 

131    'key3_18{1,6}' 'key3_18{1,7}' 'key3_18{1,8}']; 

132   key31{1,8}=f_fun(bin_key(key3_2{1,8})); 

133   key32{1,8}=uint16(key31{1,8}); 

134   key3{1,8}=bitshift(key32{1,8},8); 

135    

136   % generating a matrix of each 16bit int 4*4 

137   key3{2,1}(1,:)=key3{1,1}(1:4); 

138   key3{2,1}(2,:)=key3{1,1}(5:8); 

139   key3{2,1}(3,:)=key3{1,1}(9:12); 

140   key3{2,1}(4,:)=key3{1,1}(13:16); 

141   key3{2,2}(1,:)=key3{1,2}(1:4); 

142   key3{2,2}(2,:)=key3{1,2}(5:8); 

143   key3{2,2}(3,:)=key3{1,2}(9:12); 

144   key3{2,2}(4,:)=key3{1,2}(13:16); 

145   key3{2,3}(1,:)=key3{1,3}(1:4); 

146   key3{2,3}(2,:)=key3{1,3}(5:8); 

147   key3{2,3}(3,:)=key3{1,3}(9:12); 

148   key3{2,3}(4,:)=key3{1,3}(13:16); 

149   key3{2,4}(1,:)=key3{1,4}(1:4); 

150   key3{2,4}(2,:)=key3{1,4}(5:8); 

151   key3{2,4}(3,:)=key3{1,4}(9:12); 

152   key3{2,4}(4,:)=key3{1,4}(13:16); 

153    

154   key3{2,5}(1,:)=key3{1,5}(1:4); 

155   key3{2,5}(2,:)=key3{1,5}(5:8); 

156   key3{2,5}(3,:)=key3{1,5}(9:12); 

157   key3{2,5}(4,:)=key3{1,5}(13:16); 

158   key3{2,6}(1,:)=key3{1,6}(1:4); 

159   key3{2,6}(2,:)=key3{1,6}(5:8); 

160   key3{2,6}(3,:)=key3{1,6}(9:12); 

161   key3{2,6}(4,:)=key3{1,6}(13:16); 

162   key3{2,7}(1,:)=key3{1,7}(1:4); 

163   key3{2,7}(2,:)=key3{1,7}(5:8); 

164   key3{2,7}(3,:)=key3{1,7}(9:12); 

165   key3{2,7}(4,:)=key3{1,7}(13:16); 

166   key3{2,8}(1,:)=key3{1,8}(1:4); 

167   key3{2,8}(2,:)=key3{1,8}(5:8); 

168   key3{2,8}(3,:)=key3{1,8}(9:12); 

169   key3{2,8}(4,:)=key3{1,8}(13:16); 

170   %shifting 

171   key3{3,1}(1,:)=key3{2,1}(1,:); 

172   key3{3,1}(2,:)=circshift(key3{2,1}(2,:),[1 1]); 

173   key3{3,1}(3,:)=circshift(key3{2,1}(3,:),[1 2]); 

174   key3{3,1}(4,:)=circshift(key3{2,1}(4,:),[1 3]); 

175    

176   key3{3,2}(1,:)=key3{2,2}(1,:); 

177   key3{3,2}(2,:)=circshift(key3{2,2}(2,:),[1 1]); 

178   key3{3,2}(3,:)=circshift(key3{2,2}(3,:),[1 2]); 

179   key3{3,2}(4,:)=circshift(key3{2,2}(4,:),[1 3]); 

180    



49 
 

181   key3{3,3}(1,:)=key3{2,3}(1,:); 

182   key3{3,3}(2,:)=circshift(key3{2,3}(2,:),[1 1]); 

183   key3{3,3}(3,:)=circshift(key3{2,3}(3,:),[1 2]); 

184   key3{3,3}(4,:)=circshift(key3{2,3}(4,:),[1 3]); 

185    

186   key3{3,4}(1,:)=key3{2,4}(1,:); 

187   key3{3,4}(2,:)=circshift(key3{2,4}(2,:),[1 1]); 

188   key3{3,4}(3,:)=circshift(key3{2,4}(3,:),[1 2]); 

189   key3{3,4}(4,:)=circshift(key3{2,4}(4,:),[1 3]); 

190    

191   key3{3,5}(1,:)=key3{2,5}(1,:); 

192   key3{3,5}(2,:)=circshift(key3{2,5}(2,:),[1 1]); 

193   key3{3,5}(3,:)=circshift(key3{2,5}(3,:),[1 2]); 

194   key3{3,5}(4,:)=circshift(key3{2,5}(4,:),[1 3]); 

195    

196   key3{3,6}(1,:)=key3{2,6}(1,:); 

197   key3{3,6}(2,:)=circshift(key3{2,6}(2,:),[1 1]); 

198   key3{3,6}(3,:)=circshift(key3{2,6}(3,:),[1 2]); 

199   key3{3,6}(4,:)=circshift(key3{2,6}(4,:),[1 3]); 

200    

201   key3{3,7}(1,:)=key3{2,7}(1,:); 

202   key3{3,7}(2,:)=circshift(key3{2,7}(2,:),[1 1]); 

203   key3{3,7}(3,:)=circshift(key3{2,7}(3,:),[1 2]); 

204   key3{3,7}(4,:)=circshift(key3{2,7}(4,:),[1 3]); 

205    

206   key3{3,8}(1,:)=key3{2,8}(1,:); 

207   key3{3,8}(2,:)=circshift(key3{2,8}(2,:),[1 1]); 

208   key3{3,8}(3,:)=circshift(key3{2,8}(3,:),[1 2]); 

209   key3{3,8}(4,:)=circshift(key3{2,8}(4,:),[1 3]); 

210    

211   x1=key3{3,1}; %Modified 

212   w1=~key3{3,1}; 

213   key3_1{8,1}=not(xor(x1,w1));  

214   key3_1{8,2}=key3{3,2}; %Modified 

215   key3_1{8,3}=key3{3,3}; %Modified 

216   key3_1{8,4}=key3{3,4}; %Modified 

217    

218   key3_1{8,5}=key3{3,5};%Modified 

219   key3_1{8,6}=key3{3,6}; %Modified 

220   key3_1{8,7}=key3{3,7}; %Modified 

221   x8=key3{3,8}; %Modified 

222   w8=~key3{3,8}; 

223   key3_1{8,8}=xor(w8,x8);  

224    

225   key3_1{9,1}=[key3_1{8,1}(1,:),key3_1{8,1}(2,:) 

226   ,key3_1{8,1}(3,:),key3_1{8,1}(4,:)]; 

227   key3_1{9,2}=[key3_1{8,2}(:,1)', 

228   flipdim(key3_1{8,2}(:,2)',2),key3_1{8,2}(:,3)',... 

229       flipdim(key3_1{8,2}(:,4)',2)]; 

230   key3_1{9,3}=[key3_1{8,3}(:,1)', 

231   flipdim(key3_1{8,3}(:,2)',2),key3_1{8,3}(:,3)',... 

232       flipdim(key3_1{8,3}(:,4)',2)]; 

233   key3_1{9,4}=[key3_1{8,4}(1,:),key3_1{8,4}(2,:), 

234   key3_1{8,4}(3,:),key3_1{8,4}(4,:)]; 

235    

236   key3_1{9,5}=[key3_1{8,5}(1,:),key3_1{8,5}(2,:), 

237   key3_1{8,5}(3,:),key3_1{8,5}(4,:)]; 

238   key3_1{9,6}=[key3_1{8,6}(:,1)', 

239   flipdim(key3_1{8,6}(:,2)',2),key3_1{8,6}(:,3)',... 

240       flipdim(key3_1{8,6}(:,4)',2)]; 

241   key3_1{9,7}=[key3_1{8,7}(:,1)', 



50 
 

242   flipdim(key3_1{8,7}(:,2)',2),key3_1{8,7}(:,3)',... 

243       flipdim(key3_1{8,7}(:,4)',2)]; 

244   key3_1{9,8}=[key3_1{8,8}(1,:),key3_1{8,8}(2,:), 

245   key3_1{8,8}(3,:),key3_1{8,8}(4,:)]; 

246    

247   a=key3_1{9,1}; 

248   b=key3_1{9,2}; 

249   c=key3_1{9,3}; 

250   d=key3_1{9,4}; 

251   e=key3_1{9,5}; 

252   f=key3_1{9,6}; 

253   g=key3_1{9,7}; 

254   h=key3_1{9,8}; 

255   %K1 

256   A=uint16(a); 

257   K1=bitshift(A,5); 

258   %K2 

259   B=uint16(b); 

260   K2=bitshift(B,-9); 

261   %K3 

262   C=uint16(c); 

263   K3=bitshift(C,5); 

264   %K4 

265   D=uint16(d); 

266   K4=bitshift(D,-9); 

267   %K5 

268   E=uint16(e); 

269   K5=bitshift(E,5); 

270   %K6 

271   F=uint16(f); 

272   K6=bitshift(F,-9); 

273   %K7 

274   G=uint16(g); 

275   K7=bitshift(G,5); 

276   %K8 

277   H=uint16(h); 

278   K8=bitshift(H,-9); 

279   %K9 

280   t3=xor(~K1,d); 

281   t1=uint16(t3); 

282   t2=bitshift(t1,-5); 

283   t6=xor(K5,~h); 

284   t4=uint16(t6); 

285   t5=bitshift(t4,9); 

286   K9=xor(t2,t5); 

  



51 
 

Appendix C. Matlab Code for Encryption Function 
 
1   Function[cipher]=SF_Encrypt 

2   (bin_msg,K1,K2,K3,K4,K5,K6,K7,K8,K9); 

3   enc=cell(12,4); 

4   % Arranging 64 bit into 16 bit block 

5   enc1{1,1}=bin_msg(1:16); 

6   enc11{1,1}=bin_msg(1:2); 

7   enc12{1,1}=bin_msg(3:4); 

8   enc13{1,1}=bin_msg(5:6); 

9   enc14{1,1}=bin_msg(7:8); 

10   enc15{1,1}=bin_msg(9:10); 

11   enc16{1,1}=bin_msg(11:12); 

12   enc17{1,1}=bin_msg(13:14); 

13   enc18{1,1}=bin_msg(15:16); 

14    

15   enc2{1,2}=bin_msg(17:32); 

16   enc21{1,2}=bin_msg(17:18); 

17   enc22{1,2}=bin_msg(19:20); 

18   enc23{1,2}=bin_msg(21:22); 

19   enc24{1,2}=bin_msg(23:24); 

20   enc25{1,2}=bin_msg(25:26); 

21   enc26{1,2}=bin_msg(27:28); 

22   enc27{1,2}=bin_msg(29:30); 

23   enc28{1,2}=bin_msg(31:32); 

24    

25   enc3{1,3}=bin_msg(33:48); 

26   enc31{1,3}=bin_msg(33:34); 

27   enc32{1,3}=bin_msg(35:36); 

28   enc33{1,3}=bin_msg(37:38); 

29   enc34{1,3}=bin_msg(39:40); 

30   enc35{1,3}=bin_msg(41:42); 

31   enc36{1,3}=bin_msg(43:44); 

32   enc37{1,3}=bin_msg(45:46); 

33   enc38{1,3}=bin_msg(47:48); 

34    

35   enc4{1,4}=bin_msg(49:64); 

36   enc41{1,4}=bin_msg(49:50); 

37   enc42{1,4}=bin_msg(51:52); 

38   enc43{1,4}=bin_msg(53:54); 

39   enc44{1,4}=bin_msg(55:56); 

40   enc45{1,4}=bin_msg(57:58); 

41   enc46{1,4}=bin_msg(59:60); 

42   enc47{1,4}=bin_msg(61:62); 

43   enc48{1,4}=bin_msg(63:64); 

44    

45   enc{1,1}=[enc42{1,4},enc32{1,3},enc22{1,2},enc12{1,1} 

46   ,enc48{1,4},enc38{1,3},enc28{1,2},enc18{1,1}]; 

47   enc{1,2}=[enc46{1,4},enc36{1,3},enc26{1,2},enc16{1,1} 

48   ,~enc46{1,4},~enc36{1,3},~enc26{1,2},~enc16{1,1}]; 

49   enc{1,3}=[enc45{1,4},enc35{1,3},enc25{1,2},enc15{1,1} 

50   ,~enc45{1,4},~enc35{1,3},~enc25{1,2},~enc15{1,1}]; 

51   enc{1,4}=[enc44{1,4},enc34{1,3},enc24{1,2},enc14{1,1} 

52   ,~enc44{1,4},~enc34{1,3},~enc24{1,2},~enc14{1,1}]; 

53   enc{1,5}=[enc43{1,4},enc33{1,3},enc23{1,2},enc13{1,1} 

54   ,~enc43{1,4},~enc33{1,3},~enc23{1,2},~enc13{1,1}]; 

55   enc{1,6}=[enc41{1,4},enc31{1,3},enc21{1,2},enc11{1,1} 

56   ,enc47{1,4},enc37{1,3},enc27{1,2},enc17{1,1}]; 

57    

58   d=hex2dec('9e3779b9'); 

59   delta=uint16(d); 



52 
 

60   % For First round 

61   %Step no 01 

62   A1=uint16(enc{1,1}); 

63   enc{2,1}=xor(K1,bitshift(A1,5)); 

64   %performing xnor operation in first 16 bits with K1 

65   enc2{2,2}=not(xor(K1,enc{1,2})); 

66   enc{2,2}=xor(enc2{2,2},delta); 

67   % 

68   enc{2,3}=xor(f_fun(enc{2,2}),enc{1,4}); 

69   %performing xnor operation in last 16 bits with K1 

70   enc{2,5}=not(xor(K1,enc{1,5})); 

71   % 

72   enc2{2,4}=xor(f_fun(enc{2,5}),enc{1,3}); 

73   enc{2,4}=xor(enc2{2,4},delta); 

74   % 

75   B1=uint16(enc{1,6}); 

76   C1=xor(K1,delta); 

77   enc{2,6}=xor(C1,bitshift(B1,5)); 

78    

79   % For 2 Round 

80   A2=uint16(enc{2,1}); 

81   enc{3,1}=xor(K2,bitshift(A2,5)); 

82   %performing Xnor operation with K2 

83   enc2{3,2}=not(xor(K2,enc{2,2})); 

84   enc{3,2}=xor(enc2{3,2},delta); 

85   % 

86   enc{3,3}=xor(f_fun(enc{3,2}),enc{2,3}); 

87   %Performing xnor operation on last 16 bit 

88   enc{3,5}=not(xor(K2,enc{2,5})); 

89   % 

90   enc2{3,4}=xor(f_fun(enc{3,5}),enc{2,4}); 

91   enc{3,4}=xor(enc2{3,4},delta); 

92   % 

93   B2=uint16(enc{2,6}); 

94   C2=xor(K2,delta); 

95   enc{3,6}=xor(C2,bitshift(B2,5)); 

96    

97   % For 3 Round 

98   A3=uint16(enc{3,1}); 

99   enc{4,1}=xor(K3,bitshift(A3,1)); 

100   %performing Xnor operation with K3 

101   enc2{4,2}=not(xor(K3,enc{3,2})); 

102   enc{4,2}=xor(enc2{4,2},delta); 

103   % 

104   enc{4,3}=xor(f_fun(enc{4,2}),enc{3,3}); 

105   %Performing xnor operation on last 16 bit 

106   enc{4,5}=not(xor(K3,enc{3,5})); 

107   % 

108   enc2{4,4}=xor(f_fun(enc{4,5}),enc{3,4}); 

109   enc{4,4}=xor(enc2{4,4},delta); 

110   % 

111   B3=uint16(enc{3,6}); 

112   C3=xor(K3,delta); 

113   enc{4,6}=xor(C3,bitshift(B3,5)); 

114    

115   % For 4 Round 

116   A4=uint16(enc{4,1}); 

117   enc{5,1}=xor(K4,bitshift(A4,5)); 

118   %performing xnor operation in first 16 bits with K4 

119   enc2{5,2}=not(xor(K4,enc{4,2})); 

120   enc{5,2}=xor(enc2{5,2},delta); 



53 
 

121   % 

122   enc{5,3}=xor(f_fun(enc{5,2}),enc{4,3}); 

123   %performing xnor operation in last 16 bits with K1 

124   enc{5,5}=not(xor(K4,enc{4,5})); 

125   % 

126   enc2{5,4}=xor(f_fun(enc{5,5}),enc{4,4}); 

127   enc{5,4}=xor(enc2{5,4},delta); 

128   % 

129   B4=uint16(enc{4,6}); 

130   C4=xor(K4,delta); 

131   enc{5,6}=xor(C4,bitshift(B4,5)); 

132     

133   %Round no 5 

134   A5=uint16(enc{5,1}); 

135   enc{6,1}=xor(K5,bitshift(A5,5)); 

136   %performing Xnor operation with K5 

137   enc2{6,2}=not(xor(K5,enc{5,2})); 

138   enc{6,2}=xor(enc2{6,2},delta); 

139   % 

140   enc{6,3}=xor(f_fun(enc{6,2}),enc{5,3}); 

141   %Performing xnor operation on last 16 bit 

142   enc{6,5}=not(xor(K5,enc{5,5})); 

143   % 

144   enc2{6,4}=xor(f_fun(enc{6,5}),enc{5,4}); 

145   enc{6,4}=xor(enc2{6,4},delta); 

146   % 

147   B5=uint16(enc{5,6}); 

148   C5=xor(K5,delta); 

149   enc{6,6}=xor(C5,bitshift(B5,5)); 

150    

151   %Round no 6 

152   A6=uint16(enc{6,1}); 

153   enc{7,1}=xor(K6,bitshift(A6,5)); 

154   %performing Xnor operation with K6 

155   enc2{7,2}=not(xor(K6,enc{6,2})); 

156   enc{7,2}=xor(enc2{7,2},delta); 

157   % 

158   enc{7,3}=xor(f_fun(enc{7,2}),enc{6,3}); 

159   %Performing xnor operation on last 16 bit 

160   enc{7,5}=not(xor(K6,enc{6,5})); 

161   % 

162   enc2{7,4}=xor(f_fun(enc{7,5}),enc{6,4}); 

163   enc{7,4}=xor(enc2{7,4},delta); 

164   % 

165   B6=uint16(enc{6,6}); 

166   C6=xor(K6,delta); 

167   enc{7,6}=xor(C6,bitshift(B6,5)); 

168    

169   %Round no 7 

170   A7=uint16(enc{7,1}); 

171   enc{8,1}=xor(K7,bitshift(A7,5)); 

172   %performing Xnor operation with K7 

173   enc2{8,2}=not(xor(K7,enc{7,2})); 

174   enc{8,2}=xor(enc2{8,2},delta); 

175   % 

176   enc{8,3}=xor(f_fun(enc{8,2}),enc{7,3}); 

177   %Performing xnor operation on last 16 bit 

178   enc{8,5}=not(xor(K7,enc{7,5})); 

179   % 

180   enc2{8,4}=xor(f_fun(enc{8,5}),enc{7,4}); 

181   enc{8,4}=xor(enc2{8,4},delta); 



54 
 

182   % 

183   B7=uint16(enc{7,6}); 

184   C7=xor(K7,delta); 

185   enc{8,6}=xor(C7,bitshift(B7,5)); 

186    

187   %Round no 8 

188   A8=uint16(enc{8,1}); 

189   enc{9,1}=xor(K8,bitshift(A8,5)); 

190   %performing Xnor operation with K8 

191   enc2{9,2}=not(xor(K8,enc{8,2})); 

192   enc{9,2}=xor(enc2{9,2},delta); 

193   % 

194   enc{9,3}=xor(f_fun(enc{9,2}),enc{8,3}); 

195   %Performing xnor operation on last 16 bit 

196   enc{9,5}=not(xor(K8,enc{8,5})); 

197   % 

198   enc2{9,4}=xor(f_fun(enc{9,5}),enc{8,4}); 

199   enc{9,4}=xor(enc2{9,4},delta); 

200   % 

201   B8=uint16(enc{8,6}); 

202   C8=xor(K8,delta); 

203   enc{9,6}=xor(C8,bitshift(B8,5)); 

204    

205   %Round no 9 

206   A9=uint16(enc{9,1}); 

207   enc2{10,1}=bitshift(A9,5); 

208   enc{10,1}=xor(K9,enc2{10,1}); 

209   %performing Xnor operation with K9 

210   enc2{10,2}=not(xor(K9,enc{9,2})); 

211   enc{10,2}=xor(enc2{10,2},delta); 

212   % 

213   enc{10,3}=xor(f_fun(enc{10,2}),enc{9,3}); 

214   %Performing xnor operation on last 16 bit 

215   enc{10,5}=not(xor(K9,enc{9,5})); 

216   % 

217   enc2{10,4}=xor(f_fun(enc{10,5}),enc{9,4}); 

218   enc{10,4}=xor(enc2{10,4},delta); 

219   % 

220   B9=uint16(enc{9,6}); 

221   enc2{10,6}=bitshift(B9,5); 

222   C9=xor(K9,delta); 

223   enc{10,6}=xor(C9,enc2{10,6}); 

224    

225   %Swaping Blocks 

226   enc{11,1}=f_fun(enc{10,6}); 

227   enc{11,2}=xor(f_fun2(enc{10,3}),f_fun4(enc{10,2})); 

228   enc{11,3}=xor(f_fun3(enc{10,5}),f_fun(enc{10,4})); 

229   enc{11,4}=f_fun4(enc{10,1}); 

230   % 

231   enc{12,1}=enc{11,2}; 

232   enc{12,2}=enc{11,3}; 

233   enc{12,3}=enc{11,4}; 

234   enc{12,4}=enc{11,1}; 

235    

236   cipher=[enc{12,1},enc{12,2},enc{12,3},enc{12,4}];   

  



55 
 

 

Appendix D. Matlab Code for Decryption Function 
 
1   function[bin_msg]=SF_Decryption 

2   (binary_cipher,K1,K2,K3,K4,K5,K6,K7,K8,K9); 

3   %Decryption 

4   dec=cell(12,4); 

5   % Arranging 64 bit into 16 bit block 

6    

7   dec1{1,1}=binary_cipher(1:16); 

8   dec11{1,1}=binary_cipher(1:2); 

9   dec12{1,1}=binary_cipher(3:4); 

10   dec13{1,1}=binary_cipher(5:6); 

11   dec14{1,1}=binary_cipher(7:8); 

12   dec15{1,1}=binary_cipher(9:10); 

13   dec16{1,1}=binary_cipher(11:12); 

14   dec17{1,1}=binary_cipher(13:14); 

15   dec18{1,1}=binary_cipher(15:16); 

16    

17   dec2{1,2}=binary_cipher(17:32); 

18   dec21{1,2}=binary_cipher(17:18); 

19   dec22{1,2}=binary_cipher(19:20); 

20   dec23{1,2}=binary_cipher(21:22); 

21   dec24{1,2}=binary_cipher(23:24); 

22   dec25{1,2}=binary_cipher(25:26); 

23   dec26{1,2}=binary_cipher(27:28); 

24   dec27{1,2}=binary_cipher(29:30); 

25   dec28{1,2}=binary_cipher(31:32); 

26    

27   dec3{1,3}=binary_cipher(33:48); 

28   dec31{1,3}=binary_cipher(33:34); 

29   dec32{1,3}=binary_cipher(35:36); 

30   dec33{1,3}=binary_cipher(37:38); 

31   dec34{1,3}=binary_cipher(39:40); 

32   dec35{1,3}=binary_cipher(41:42); 

33   dec36{1,3}=binary_cipher(43:44); 

34   dec37{1,3}=binary_cipher(45:46); 

35   dec38{1,3}=binary_cipher(47:48); 

36    

37   dec4{1,4}=binary_cipher(49:64); 

38   dec41{1,4}=binary_cipher(49:50); 

39   dec42{1,4}=binary_cipher(51:52); 

40   dec43{1,4}=binary_cipher(53:54); 

41   dec44{1,4}=binary_cipher(55:56); 

42   dec45{1,4}=binary_cipher(57:58); 

43   dec46{1,4}=binary_cipher(59:60); 

44   dec47{1,4}=binary_cipher(61:62); 

45   dec48{1,4}=binary_cipher(63:64); 

46    

47   dec{1,1}=[dec42{1,4},dec32{1,3},dec22{1,2},dec12{1,1} 

48   ,dec48{1,4},dec38{1,3},dec28{1,2},dec18{1,1}]; 

49   dec{1,2}=[dec46{1,4},dec36{1,3},dec26{1,2},dec16{1,1} 

50   ,~dec46{1,4},~dec36{1,3},~dec26{1,2},~dec16{1,1}]; 

51   dec{1,3}=[dec45{1,4},dec35{1,3},dec25{1,2},dec15{1,1} 

52   ,~dec45{1,4},~dec35{1,3},~dec25{1,2},~dec15{1,1}]; 

53   dec{1,4}=[dec44{1,4},dec34{1,3},dec24{1,2},dec14{1,1} 

54   ,~dec44{1,4},~dec34{1,3},~dec24{1,2},~dec14{1,1}]; 

55   dec{1,5}=[dec43{1,4},dec33{1,3},dec23{1,2},dec13{1,1} 

56   ,~dec43{1,4},~dec33{1,3},~dec23{1,2},~dec13{1,1}]; 

57   dec{1,6}=[dec41{1,4},dec31{1,3},dec21{1,2},dec11{1,1} 

58   ,dec47{1,4},dec37{1,3},dec27{1,2},dec17{1,1}]; 



56 
 

59   % 

60   d=hex2dec('9e3779b9'); 

61   delta=uint16(d); 

62    

63   % For round 1 

64   C1=xor(K9,delta); 

65   dec1{2,1}=xor(C1,dec{1,1}); 

66   B1=uint16(dec1{2,1}); 

67   dec2{2,1}=bitshift(B1,5); 

68   dec{2,1}=xor(C1,dec2{2,1}); 

69   % 

70   dec{2,2}=not(xor(K9,dec{1,2})); 

71   % 

72   dec2{2,4}=xor(dec{1,3},delta); 

73   dec{2,4}=xor(f_fun(dec{1,2}),dec2{2,4}); 

74   % 

75   dec2{2,5}=xor(dec{1,5},delta); 

76   dec{2,5}=not(xor(K9,dec2{2,5})); 

77   % 

78   dec{2,3}=xor(f_fun(dec2{2,5}),dec{1,4}); 

79   % 

80   A1=uint16(dec{1,6}); 

81   dec2{2,6}=bitshift(A1,5); 

82   dec{2,6}=xor(K9,dec2{2,6}); 

83   % 

84    

85   % For 2 Round 

86   C2=xor(K8,delta); 

87   dec1{3,1}=xor(C2,dec{2,1}); 

88   B2=uint16(dec1{3,1}); 

89   dec2{3,1}=bitshift(B2,5); 

90   dec{3,1}=xor(C2,dec2{3,1}); 

91   % 

92   dec{3,2}=not(xor(K8,dec{2,2})); 

93   % 

94   dec2{3,4}=xor(dec{2,3},delta); 

95   dec{3,4}=xor(f_fun(dec{2,2}),dec2{3,4}); 

96   % 

97   dec2{3,5}=xor(dec{2,3},delta); 

98   dec{3,5}=not(xor(K8,dec2{3,5})); 

99   % 

100   dec{3,3}=xor(f_fun(dec2{3,5}),dec{2,4}); 

101   % 

102   A2=uint16(dec{2,6}); 

103   dec2{3,6}=bitshift(A2,5); 

104   dec{3,6}=xor(K8,dec2{3,6}); 

105   %Step no 02 

106    

107   %Round no 3 

108   C3=xor(K7,delta); 

109   dec1{4,1}=xor(C3,dec{3,1}); 

110   B3=uint16(dec1{4,1}); 

111   dec2{4,1}=bitshift(B3,5); 

112   dec{4,1}=xor(C3,dec2{4,1}); 

113   % 

114   dec{4,2}=not(xor(K7,dec{3,2})); 

115   % 

116   dec2{4,4}=xor(dec{3,3},delta); 

117   dec{4,4}=xor(f_fun(dec{3,2}),dec2{4,4}); 

118   % 

119   dec2{4,5}=xor(dec{3,5},delta); 



57 
 

120   dec{4,5}=not(xor(K7,dec2{4,5})); 

121   % 

122   dec{4,3}=xor(f_fun(dec2{4,5}),dec{3,4}); 

123   % 

124   A3=uint16(dec{3,6}); 

125   dec2{4,6}=bitshift(A3,5); 

126   dec{4,6}=xor(K7,dec2{4,6}); 

127    

128   %Round no 4 

129   C4=xor(K6,delta); 

130   dec1{5,1}=xor(C4,dec{4,1}); 

131   B4=uint16(dec1{5,1}); 

132   dec2{5,1}=bitshift(B4,5); 

133   dec{5,1}=xor(C4,dec2{5,1}); 

134   % 

135   dec{5,2}=not(xor(K6,dec{4,2})); 

136   % 

137   dec2{5,4}=xor(dec{4,3},delta); 

138   dec{5,4}=xor(f_fun(dec{4,2}),dec2{5,4}); 

139   % 

140   dec2{5,5}=xor(dec{4,5},delta); 

141   dec{5,5}=not(xor(K6,dec2{5,5})); 

142   % 

143   dec{5,3}=xor(f_fun(dec2{5,5}),dec{4,4}); 

144   % 

145   A4=uint16(dec{4,6}); 

146   dec2{5,6}=bitshift(A4,5); 

147   dec{5,6}=xor(K6,dec2{5,6}); 

148    

149   %Round no 5 

150   C5=xor(K5,delta); 

151   dec1{6,1}=xor(C5,dec{5,1}); 

152   B5=uint16(dec1{6,1}); 

153   dec2{6,1}=bitshift(B5,5); 

154   dec{6,1}=xor(C5,dec2{6,1}); 

155   % 

156   dec{6,2}=not(xor(K5,dec{5,2})); 

157   % 

158   dec2{6,4}=xor(dec{5,3},delta); 

159   dec{6,4}=xor(f_fun(dec{5,2}),dec2{6,4}); 

160   % 

161   dec2{6,5}=xor(dec{5,5},delta); 

162   dec{6,5}=not(xor(K5,dec2{6,5})); 

163   % 

164   dec{6,3}=xor(f_fun(dec2{6,5}),dec{5,4}); 

165   % 

166   A5=uint16(dec{5,6}); 

167   dec2{6,6}=bitshift(A5,5); 

168   dec{6,6}=xor(K5,dec2{6,6}); 

169   % 

170   %Round no 6 

171   C6=xor(K4,delta); 

172   dec1{7,1}=xor(C6,dec{6,1}); 

173   B6=uint16(dec1{7,1}); 

174   dec2{7,1}=bitshift(B6,5); 

175   dec{7,1}=xor(C6,dec2{7,1}); 

176   % 

177   dec{7,2}=not(xor(K4,dec{6,2})); 

178   % 

179   dec2{7,4}=xor(dec{6,3},delta); 

180   dec{7,4}=xor(f_fun(dec{6,2}),dec2{7,4}); 



58 
 

181   % 

182   dec2{7,5}=xor(dec{6,5},delta); 

183   dec{7,5}=not(xor(K4,dec2{7,5})); 

184   % 

185   dec{7,3}=xor(f_fun(dec2{7,5}),dec{6,4}); 

186   % 

187   A6=uint16(dec{6,6}); 

188   dec2{7,6}=bitshift(A6,5); 

189   dec{7,6}=xor(K4,dec2{7,6}); 

190    

191   %Round no 7 

192   C7=xor(K3,delta); 

193   dec1{8,1}=xor(C7,dec{7,1}); 

194   B7=uint16(dec1{8,1}); 

195   dec2{8,1}=bitshift(B7,5); 

196   dec{8,1}=xor(C7,dec2{8,1}); 

197   % 

198   dec{8,2}=not(xor(K3,dec{7,2})); 

199   % 

200   dec2{8,4}=xor(dec{7,3},delta); 

201   dec{8,4}=xor(f_fun(dec{7,2}),dec2{8,4}); 

202   % 

203   dec2{8,5}=xor(dec{7,5},delta); 

204   dec{8,5}=not(xor(K3,dec2{8,5})); 

205   % 

206   dec{8,3}=xor(f_fun(dec2{8,5}),dec{7,4}); 

207   % 

208   A7=uint16(dec{7,6}); 

209   dec2{8,6}=bitshift(A7,5); 

210   dec{8,6}=xor(K4,dec2{8,6}); 

211    

212   %Round no 8 

213   C8=xor(K2,delta); 

214   dec1{9,1}=xor(C8,dec{8,1}); 

215   B8=uint16(dec1{9,1}); 

216   dec2{9,1}=bitshift(B8,5); 

217   dec{9,1}=xor(C8,dec2{9,1}); 

218   % 

219   dec{9,2}=not(xor(K2,dec{8,2})); 

220   % 

221   dec2{9,4}=xor(dec{8,3},delta); 

222   dec{9,4}=xor(f_fun(dec{8,2}),dec2{9,4}); 

223   % 

224   dec2{9,5}=xor(dec{8,5},delta); 

225   dec{9,5}=not(xor(K2,dec2{9,5})); 

226   % 

227   dec{9,3}=xor(f_fun(dec2{9,5}),dec{8,4}); 

228   % 

229   A8=uint16(dec{8,6}); 

230   dec2{9,6}=bitshift(A8,5); 

231   dec{9,6}=xor(K3,dec2{9,6}); 

232    

233   %Round no 9 

234   C9=xor(K1,delta); 

235   dec1{10,1}=xor(C9,dec{9,1}); 

236   B9=uint16(dec1{10,1}); 

237   dec2{10,1}=bitshift(B9,5); 

238   dec{10,1}=xor(C9,dec2{10,1}); 

239   % 

240   dec{10,2}=not(xor(K1,dec{9,2})); 

241   % 



59 
 

242   dec2{10,4}=xor(dec{9,3},delta); 

243   dec{10,4}=xor(f_fun(dec{9,2}),dec2{10,4}); 

244   % 

245   dec2{10,5}=xor(dec{9,5},delta); 

246   dec{10,5}=not(xor(K1,dec2{10,5})); 

247   % 

248   dec{10,3}=xor(f_fun(dec2{10,5}),dec{9,4}); 

249   % 

250   A9=uint16(dec{9,6}); 

251   dec2{10,6}=bitshift(A9,5); 

252   dec{10,6}=xor(K3,dec2{10,6}); 

253   % 

254   dec{11,1}=f_fun(dec{10,6}); 

255   dec{11,2}=xor(f_fun2(dec{10,3}),f_fun4(dec{10,2})); 

256   dec{11,3}=xor(f_fun3(dec{10,5}),f_fun(dec{10,4})); 

257   dec{11,4}=f_fun4(dec{10,1}); 

258   % 

259   dec{12,1}=dec{11,2}; 

260   dec{12,2}=dec{11,3}; 

261   dec{12,3}=dec{11,4}; 

262   dec{12,4}=dec{11,1}; 

263    

264   bin_msg=[dec{12,1},dec{12,2},dec{12,3},dec{12,4}]; 

   

  



60 
 

Appendix E. Matlab Code for Scalling Function 
 
1   function [Data,padding] = Scalling (Data,sf); 

2   % Data=imread('cameraman.tif'); 

3   Data=reshape(Data,[size(Data,1)*size(Data,2) 1]); 

4   Data=double(Data); 

5   padding=mod(length(Data),sf); 

6   if (padding~=0) 

7       padding=sf-padding; 

8   end 

9   Data=[Data;zeros(padding,1)]; 

10   Data=reshape(Data,[sf,length(Data)/sf]); 

  



61 
 

Appendix F. Matlab Code for P Function 
 
1  function O = P(I) 

2  if(I==logical([0 0 0 0])) 

3          O = logical([0 0 1 1]); end 

4  if(I==logical([0 0 0 1])) 

5          O = logical([1 1 1 1]); end 

6  if(I==logical([0 0 1 0])) 

7          O = logical([1 1 1 0]); end 

8  if(I==logical([0 0 1 1])) 

9          O = logical([0 0 0 0]); end 

10  if(I==logical([0 1 0 0])) 

11          O = logical([0 1 0 1]); end 

12  if(I==logical([0 1 0 1])) 

13          O = logical([0 1 0 0]); end 

14  if(I==logical([0 1 1 0])) 

15          O = logical([1 0 1 1]); end   

16  if(I==logical([0 1 1 1])) 

17          O = logical([1 1 0 0]); end   

18  if(I==logical([1 0 0 0])) 

19          O = logical([1 1 0 1]); end   

20  if(I==logical([1 0 0 1])) 

21          O = logical([1 0 1 0]); end 

22  if(I==logical([1 0 1 0])) 

23          O = logical([1 0 0 1]); end   

24  if(I==logical([1 0 1 1])) 

25          O = logical([0 1 1 0]); end    

26  if(I==logical([1 1 0 0])) 

27          O = logical([0 1 1 1]); end   

28  if(I==logical([1 1 0 1])) 

29          O = logical([1 0 0 0]); end   

30  if(I==logical([1 1 1 0])) 

31          O = logical([0 0 1 0]); end   

32  if(I==logical([1 1 1 1])) 

33          O = logical([0 0 0 1]); end   

34  End 

  



62 
 

Appendix G. Matlab Code for Q Function 
 
1  function O = Q_fun(I) 

2  if(I==logical([0 0 0 0])) 

3          O = logical([1 0 0 1]); end 

4  if(I==logical([0 0 0 1])) 

5          O = logical([1 1 1 0]); end 

6  if(I==logical([0 0 1 0])) 

7          O = logical([0 1 0 1]); end 

8  if(I==logical([0 0 1 1])) 

9          O = logical([0 1 1 0]); end 

10  if(I==logical([0 1 0 0])) 

11          O = logical([1 0 1 0]); end 

12  if(I==logical([0 1 0 1])) 

13          O = logical([0 0 1 0]); end 

14  if(I==logical([0 1 1 0])) 

15          O = logical([0 0 1 1]); end 

16  if(I==logical([0 1 1 1])) 

17          O = logical([1 1 0 0]); end 

18  if(I==logical([1 0 0 0])) 

19          O = logical([1 1 1 1]); end 

20  if(I==logical([1 0 0 1])) 

21          O = logical([0 0 0 0]); end 

22  if(I==logical([1 0 1 0])) 

23          O = logical([0 1 0 0]); end 

24  if(I==logical([1 0 1 1])) 

25          O = logical([1 1 0 1]); end 

26  if(I==logical([1 1 0 0])) 

27          O = logical([0 1 1 1]); end 

28  if(I==logical([1 1 0 1])) 

29          O = logical([1 0 1 1]); end 

30  if(I==logical([1 1 1 0])) 

31          O = logical([0 0 0 1]); end 

32  if(I==logical([1 1 1 1])) 

33          O = logical([1 0 0 0]); end 

34  End 

  



63 
 

Appendix H. Matlab Code for Function 1 
 
1   function a = f_fun(a) 

2   a=[P_fun(a(1:4)),Q_fun(a(5:8)),P_fun(a(9:12)) 

3   ,Q_fun(a(13:16))]; 

4   a=[Q_fun([a(1:2),a(5:6)]),P_fun([a(3:4),a(7:8)]) 

5   ,Q_fun([a(9:10),a(13:14)]),P_fun([a(11:12),a(15:16)])]; 

6   a=[P_fun([a(1:2),a(5:6)]),Q_fun([a(3:4),a(7:8)]) 

7   ,P_fun([a(9:10),a(13:14)]),Q_fun([a(11:12),a(15:16)])]; 

8   end 

  



64 
 

Appendix I. Matlab Code for Function 2 
 
1   function a = f_fun2(a) 

2   a=[P_fun(a(1:4)),Q_fun(a(5:8)),P_fun(a(9:12)) 

3   ,Q_fun(a(13:16))]; 

4   a=[Q_fun([a(3:4),a(1:2)]),P_fun([a(7:8),a(5:6)]) 

5   ,Q_fun([a(11:12),a(9:10)]),P_fun([a(15:16),a(13:14)])]; 

6   a=[P_fun([a(3:4),a(1:2)]),Q_fun([a(7:8),a(5:6)]) 

7   ,P_fun([a(11:12),a(9:10)]),Q_fun([a(15:16),a(13:14)])]; 

8   end 

  



65 
 

Appendix J. Matlab Code for Function 3 
 
1   function a = f_fun3(a) 

2   a=[P_fun(a(1:4)),Q_fun(a(5:8)),P_fun(a(9:12)) 

3   ,Q_fun(a(13:16))]; 

4   a=[Q_fun([a(7:8),a(1:2)]),P_fun([a(3:4),a(5:6)]) 

5   ,Q_fun([a(15:16),a(9:10)]),P_fun([a(11:12),a(13:14)])]; 

6   a=[P_fun([a(7:8),a(1:2)]),Q_fun([a(3:4),a(5:6)]) 

7   ,P_fun([a(15:16),a(9:10)]),Q_fun([a(11:12),a(13:14)])]; 

8   end 

 

  



66 
 

Appendix K. Matlab Code for Function 4 
 
1   function a = f_fun4(a) 

2   a=[P_fun(a(1:4)),Q_fun(a(5:8)),P_fun(a(9:12)) 

3   ,Q_fun(a(13:16))]; 

4   a=[Q_fun([a(15:16),a(1:2)]),P_fun([a(13:14) 

5   ,a(3:4)]),Q_fun([a(11:12),a(5:6)]),P_fun([a(9:10) 

6   ,a(7:8)])]; 

7   a=[P_fun([a(15:16),a(1:2)]),Q_fun([a(13:14),a(3:4)]) 

8   ,P_fun([a(11:12),a(5:6)]),Q_fun([a(9:10),a(7:8)])]; 

9   end 

   

 

  



67 
 

Appendix L. Matlab Code for Function of Convert Binary to Decimal 
 
1   function [ dec ] = binary2dec( binary ) 

2   %binaryB2H Summary of this function goes here 

3   %   Detailed explanation goes here 

4   E1=bin2dec(num2str(binary(1:8))); 

5    E2=bin2dec(num2str(binary(9:16))); 

6    E3=bin2dec(num2str(binary(17:24))); 

7    E4=bin2dec(num2str(binary(25:32))); 

8   E5=bin2dec(num2str(binary(33:40))); 

9    E6=bin2dec(num2str(binary(41:48))); 

10   E7=bin2dec(num2str(binary(49:56))); 

11    E8=bin2dec(num2str(binary(57:64))); 

12    dec=cell2mat({E1 E2 E3 E4 E5 E6 E7 E8}); 

13   end 

 

  



68 
 

Appendix M. Matlab Code for Function of Convert to Binary 
 
1   function [ Data_binary ] = convert2bin( Data ) 

2   %CONVERT2BIN Summary of this function goes here 

3   %   Detailed explanation goes here 

4   Data_binary=[]; 

5   for j=1:size(Data,2) 

6   temp=[]; 

7   for i=1:size(Data,1) 

8   temp = [temp Dec2Bin(Data(i,j))]; 

9   end 

10   Data_binary=[Data_binary;temp]; 

11   end 

12   end    

  



69 
 

Appendix N. Matlab Code for Function of Convert Decimal to Binary 
 
1   function [ bin ] = Dec2Bin( dec ) 

2   %DEC2BIN Summary of this function goes here 

3   %   Detailed explanation goes here 

4   % bin=logical([]); 

5   hex=[]; 

6   for b=1:length(dec) 

7       hex=[hex  dec2hex(dec(b),2)]; 

8   end 

9   [bin] = Hex2Bin(hex); 

10   End   

  



70 
 

Appendix O. Matlab Code for Function of Convert Hexadecimal to Binary 
 
1   function [ bin ] = Hex2Bin( hex ) 

2   %HEX2BIN Summary of this function goes here 

3   %   Detailed explanation goes here 

4   bin=logical([]); 

5   for b=1:length(hex) 

6       bin=[bin  logical(h2b(hex(b)))]; 

7   end 

8   end 

  



71 
 

Appendix P. Matlab Code for Function 2 of Convert Hexadecimal to Binary 
 
1  function b = h2b(h) 

2  switch h 

3      case {'0'} 

4          b = logical([0 0 0 0]); 

5      case {'1'} 

6          b = logical([0 0 0 1]); 

7      case {'2'} 

8          b = logical([0 0 1 0]); 

9      case {'3'} 

10          b = logical([0 0 1 1]); 

11      case {'4'} 

12          b = logical([0 1 0 0]); 

13      case {'5'} 

14          b = logical([0 1 0 1]); 

15      case {'6'} 

16          b = logical([0 1 1 0]); 

17      case {'7'} 

18          b = logical([0 1 1 1]); 

19      case {'8'} 

20          b = logical([1 0 0 0]); 

21      case {'9'} 

22          b = logical([1 0 0 1]); 

23      case {'A', 'a'} 

24          b = logical([1 0 1 0]); 

25      case {'B', 'b'} 

26          b = logical([1 0 1 1]); 

27      case {'C', 'c'} 

28          b = logical([1 1 0 0]); 

29      case {'D', 'd'} 

30          b = logical([1 1 0 1]); 

31      case {'E', 'e'} 

32          b = logical([1 1 1 0]); 

33      case {'F', 'f'} 

34          b = logical([1 1 1 1]); 

35  end 

  



72 
 

BIBLIOGRAPHY 
 

Name Surname  : Ahmed Mohsin Abed AL-JANABI 
 
Place and Year of Birth : Iraq, 19/02/1985 
 
Marital Status   : Married 
 
Foreign Language  : Arabic 
 
Email    : amabed.janabi@istanbulticaret.edu.tr 
 
 
Education Status 
 
High School  : Sanaa for Boys, 2003. 
 
Undergraduate : Baghdad College for Economic Sciences University, 

Software Engineering, 2008. 
 
Master : Istanbul Commerce University, Graduate school of Science 

and Engineering, Computer Engineering, 2020. 
 
 
Professional experiences 
 
Ministry of Construction, and Housing and Municipalities and Public Works, 
Information Systems Center, Communications and Networking Department, 
Internet section, 2009-2017. 
 
 
Publications 
 
Al-Janabi, A.M.A., Boyacı, A., 2020. A Lightweight Cryptography Algorithm for 

Secure Smart Cities and IOT, Electrica, 20(2), 168-176. 


