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ABSTRACT 

 
M.Sc. Thesis 

 
ALTITUDE-HOLD FLIGHT CONTROLLER DESIGN OF SUPERSONIC AIRCRAFT 

FOR LONGITUDINAL MOTION 
 

Ahmet Hulusi ÖZ 
 

İstanbul Commerce University 
Graduate School of Applied and Natural Sciences 

Department of Mechatronic Engineering 
 

Supervisor: Prof. Dr. Muammer KALYON 
 

2021, 45 Pages 
 
 

This article proposes the conventional implementation of a “Altitude-Hold 
Controller” for a high speed hypothetical aircraft. Dynamic stability of the 
aircraft is established beyond longitudinal motion of the aircraft. Firstly, the 
static stability, which is called as Stability Augmentation System (SAS), is 
studied for the system. The stability conditions are analyzed and then the 
suitable controller design is developed over the longitudinal motion of the 
aircraft. The controller which is implemented to the system is designed with 
linear methods by linearizing the longitudinal equation of motions. 
Furthermore, the linearized system is also analyzed and studied over 
performance issue. After the characteristic of the airframe is studied, the 
controller design is optimized in order to get a good approximation for the 
overall flight system. The methods used for the design are Root-Locus Method 
to  get the controller coefficients. The overall longitudinal motion is divided to 
two sections which are; the first one is the inner loop that deals with the 
pitching motion parameters and the second one is the outer loop that deals with 
the altitude reference, flight-path angle and velocity on the vertical motion of 
the aircraft. The simulation of the linearized longitudinal motion of the aircraft 
is developed in MATLAB/Simulink computer program. The analysis and the 
results are built and discussed with this program. In conclusion, the controller is 
implemented to the Simulink after the mathematical background and the 
control theory is finished and established for the overall system. The final 
results are discovered and expressed over the MATLAB/Simulink. 
 
 
Keywords: Altitude-Hold control, flight control systems, flight mechanics, 
longitudinal motion control, pitch control. 
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ÖZET 

 
Yüksek Lisans Tezi 

 
SÜPERSONİK HAVA ARACI’NIN UZUNLAMASINA HAREKET KAPSAMINDA 

“İRTİFA-KİLİTLEME” UÇUŞ KONTROLCÜSÜNÜN TASARIMI 
 

Ahmet Hulusi ÖZ 
 

İstanbul Ticaret Üniversitesi 
Fen Bilimleri Enstitüsü 

Mekatronik Mühendiliği Anabilim Dalı 
 

Danışman: Prof. Dr. Muammer KALYON 
 

2021, 45 Sayfa 
 
 

Bu makale, yüksek hızlı varsayımsal bir uçak için “İrtifa-Kilitleme 
Kontrolcü”sünün geleneksel uygulamasını göstermektedir. Uçağın dinamik 
kararlılığı, uzunlamasına hareket kapsamında elde edilmektedir. Öncelikle, 
sistem için Kararlılık Arttırma Sistemi (SAS) olarak adlandırılan statik kararlılık 
çalışılmıştır. Kararlılık koşulları analiz edilmiş ve ardından uçağın uzunlamasına 
hareketi üzerinden uygun kontrolcü tasarımı geliştirilmiştir. Ayrıca, 
doğrusallıştırılmış sistem de performans sorunu üzerinden analiz edilmiş ve 
incelenmiştir. Uçak gövdesinin karakteristiği incelendikten sonra, genel uçuş 
sistemi için iyi bir yaklaşım elde etmek adına kontrolcü tasarımı optimize 
edilmiştir. Tasarım için kullanılan yöntemler, kontroller katsayılarını elde etmek 
için Root-Locus Metodu’dur. Genel uzunlamasına hareket iki bölüme ayrılmıştır; 
birincisi yunuslama hareketi parametreleri ve açıları ile ilgilenen iç kontrol 
döngüsü, ikincisi ise uçağın dikey hareketindeki irtifa referansı, uçuş-yolu açısı 
ve hızı ile ilgilenen dış kontrol döngüsüdür. Uçağın doğrusallıştırılmış 
uzunlamasına hareketinin simülasyonu MATLAB/Simulink bilgisayar 
programında geliştirilmiştir. Analiz ve sonuçlar bu program üzerinden 
oluşturulmuş ve tartışılmıştır. Son olarak, matematiksel arka planda oluşturulan 
kontrolcü Simulink üzerinde uygulanmıştır ve tüm sistem için kontrol teorisi 
tamamlanmıştır. Nihai sonuçlar bu simülasyon üzerinden elde edilmiş ve 
MATLAB/Simulink üzerinden ifade edilmiştir. 
 
Anahtar kelimeler: İrtifa-Kilitleme kontrolü, uçuş kontrol sistemleri, uçuş 
mekaniği, uzunlamasına hareket kontrolü, yunuslama açısı kontrolü. 
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1.  INTRODUCTION 
 

The Altitude-Hold control system is one of the most important control segment 

for the aircrafts. It forces the overall system on a designed altitude which is a 

significant flight. If the aircraft is supersonic, which is like in this study, this 

control system is getting important. Therefore, over the years, so many control 

methods were developed and studied to overcome this problem. The common 

method is dealing with the characteristic of the longitudinal motion of the 

aircraft via classical methods. Some of these methods are Eigenvalue 

assignment which is known as pole placement method, Root-Locus method and 

Routh-Hurwitz Criteria. The common feature of these methods is that they has 

to be all built with linear mathematical background. So that, the system has to 

be linearized to design and develope a proper controller. 

 

Nonlinear systems are not easy to control systems. They have highly 

uncertainity conditions which can not be handle or overcome with a basic 

control methodologies. Aircrafts are one of the hardest controllable systems. 

They have highly nonlinear behaviour. The states which can be observed or 

controlled are are all dependent of a nonlinear terms. The change of 

environment is also one of the cruical point to trigger this nonlinearity. In this 

case, the states have to be controlled with a pilot command or automatically. 

Mostly, linearization methods are used to control the aircraft subsystems, since 

the nonlinearity is not easy subject to handle.  

 

However, some adaptivity methods are used to control the states without 

applying any linearity to the system. For example, dynamic inversion control is 

based on feedback linearization. Nonlinear Dynamic Inversion Control is also 

based on feedback linearization. In this study, nonlinear dynamic inversion 

control method is discussed in order to develop a proper and robust controller 

for a nonlinear system such as an aircraft. 

 



 

2 
  

 

 
Figure 1.1 : System definition 

 

NDI control uses the nonlinear feedback states to the controller section of the 

total aircraft model. It has two section or stages as an expamle on Figure 1.1 to 

complete the control loop. The very useful and the coolest thing than the other 

techniques is that it uses the wind-axes parameter as a reference inputs. This is 

important for the stability issue, since the parameters and states which are fed 

into the input side to differ from the references are the states which makes the 

stability control easily. They are all maint parameters to handle maneuvering 

the aircraft. Hence, the aircraft model is developed for the implement a 

controller into the working plant for this study. The model is developed on the 

MATLAB/Simulink program. The controller is also developed and studied on the 

same program. Outputs of the system is observed and analyzed. 
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2.  LITERATURE REVIEW 
 

Supersonic longitudinal flight control system is studied for the modern civil 

supersonic transport aircraft. Since the supersonic regime is increasing complex 

input command set and more nonlinearity for the aircraft, the stability 

augmentation system is also not easy to control (Steer, 2004). In this study, the 

set of input command response for one phase of flight, which is longitudinal 

flight, and handling qualities is revised. 

 

Nonlinear Dynamic Inversion control method is implemented to a supersonic 

aircraft for the longitudinal motion to get handling qualities in steady conditions 

(Steer, 2001). The NDI control system is based on the pitch rate criteria and 

pitch attitude, and also the normal acceleration commands. Hence, the pitching 

motion response and behaviour is analyzed for a longitudinal flight control 

system in this study. 

 

In another way, angle of attack can be used as an input command for the 

longitudinal control of a supersonic aircrafts (Lee, 2020). In order to increase 

the aerodynamic performance of the aircraft, static stability is analyzed. The 

longitudinal control law is based on dynamic inversion and proportional and 

integral control methods in this study. 

 

In latest years of 70’s, there are some flight experience beyond the altitude hold 

and mach hold autopilots on YF-12 aircraft at mach number 3 (Gilyard, 1978). 

The main reason is to obtain the maximum range at high altitude and high mach 

number. The controller is designed as two sections, which are high-pass filtered 

pitch rate feedback for inner loop with altitude rate proportional and integral 

gains and auto-throttle control for mach number conditions 

 

Nonlinear Dynamic Inversion (NDI) control can be implemented to the system 

by not doing any linearization. This method is mostly used for the aircraft 

systems. The people which dealed with this problem with adaptive control 

approach of NDI used for a small unmanned aircraft systems (Harris,2017). This 
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control method has also an incremental way to implement to the system. In this 

case, Incremental NDI Control was studied for a stability analysis (Veldt, 2016). 

The performance issue is also one of the most critical subject to deal with, since 

the nonlinearity can make the system unstabilize easily and damage the system. 

Therefore, the optimum solution or the performing the method to the system is 

a significant point. For this case, the performance and the structure of the 

method was well studied for the past years (Miller, 2013). In this study, general 

structure, controllability, adaptivity and the implementation of NDI control 

method was studied. 
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3. AIRFRAME MODEL OF AN AIRCRAFT 
 

Hypothetical supersonic aircraft is evaluated for the plant model, since the 

behaviour of the aircraft will be shown in this study. The controller is also 

designed from this plant model. The mathematical representation of the plant 

model is explained (Howe, 1990). 

 

3.1. Vector Equations of Motion 

 

In the atmospheric conditions, aircraft is a rigid body moving this environment. 

For a x-y-z space, the aircraft has a 6 degrees of freedom whose three of them 

are on the translational and three of them are on the rotational form. The whole 

body is under effect of several forces. These forces can be explained as 

aerodynamic, propulsive and gravitational forces. The definitions of the 

behaviour of the aircraft equations are described in two sections, which are 

translational and rotational equations. By this two attitude of the equations, the 

final, general form of equations of motions are derived. The mathematical 

description of translational equations can be represented as: 

 

𝑚𝑑𝑉𝑝⃗⃗ ⃗⃗  

𝑑𝑡
= ∑𝑇𝑜𝑡𝑎𝑙 𝐹𝑜𝑟𝑐𝑒𝑠 =  ∑𝐴𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 + 𝐺𝑟𝑎𝑣𝑖𝑡𝑦             (3-1)                

 

Where, 𝒎 is the mass of the body, 𝑽𝒑
⃗⃗ ⃗⃗   is the velocity vector and t is the time. 

The rotational equations can be represented as : 

 

𝑑𝐻⃗⃗ 

𝑑𝑡
= ∑𝑇𝑜𝑡𝑎𝑙 𝑀𝑜𝑚𝑒𝑛𝑡𝑠 =  ∑𝐴𝑒𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 + 𝑃𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛                                       (3-2) 

 

Where, H is the angular momentum vector. 

 

These descriptions are required in order to get a transfer function for building 

plant model and the controller. Therefore, the vector form of the equations of 

motions has to be rewritten in scalar form because of differenciating operations 
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can be operated in this form. However, the axis systems have to be also 

considered in order to do that. 

 

3.2. Axis System Definitions 

 

Aircraft motion can be represented on several axes systems. Thus, the 

behaviour of the motion background can be analyzed and considered in terms of 

mathematical approach. 

 

Since the aircraft has an acting force by aerodynamic effects and these effects 

are acting to the body, the first axis system should be the body axis in order to 

revise the motion. The body axes can be defined as x-y-z axis system on the 

origin of the aircraft. This system is fixed with respect to the aircraft. If the body 

axis system is represented in terms of mathematical approach, it will be like 

below: 

 

X – Axis : is along the longitudinal direction 

Y – Axis : is along the right wing direction 

Z – Axis : is along the downward to origin of the body 

 

After defining the body axes, the earth axes 𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒 can be defined in order to 

represent the motion of the aircraft on the earth axis frame. The representation 

of the earth axes can be derived from the body axis with respect to euler angles 

Φ, θ, φ shown in Figure 3.1. 
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Figure 3.1 : Aircraft freebody diagram (McLean, 1990) 
 

Since they are on the same origin, rotation of the earth axes to the body axes can 

be explained like below: 

 
Firstly, 𝑥𝑒 , 𝑦𝑒 , 𝑧𝑒 (earth axes) must be rotate along yawing motion with φ Euler-

angle. Secondly, earth axes must be rotated along pitching motion with θ Euler-

angle. Thirdly, earth axes must be rotated along rolling motion with Φ Eular-

angle. 

 

The bext axis system can be defined as stability axes which are important for 

building and analyzing the control system. This axis system can be also 

represented with respect to body axes in terms of orientation of the angle of 

attack, α. Therefore, the rotation from body to stability axes can be completed 

by rotating the axes about y-axis through the negative angle of attack. 

 

The last axis system, wind axes, is also important for defining the behaviour of 

the motion of the aircraft along the parameters which are belong the wind axes 

system. This is also important for the same structure system of the controller. 

The wind axes system can be expressed as the rotation of the stabilirt axes 

system with the side-slip angle, β. In terms of representing of the motion, the 

body axes are important, and the aerodynamic moments and forces are 

represented on the stability axes system. 
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3.3. Scalar Form of Equation of Motion 
 

In order to get the representation from vector form of equation (3-1), 

translational vector, has to be differantiated with respect to time. Their 

expressions are like below: 

 

Firstly, the mathematical expression of this operation : 

 

𝑑𝑅⃗ 

𝑑𝑡
|𝑖 =

𝑑𝑅⃗ 

𝑑𝑡
| 𝑟  +   𝛺⃗ + 𝑅⃗                                                                                                      (3-3) 

 

Where, |
𝑑𝑅⃗ 

𝑑𝑡
| 𝑖 is the time rate of the position vector R viewed by the inertial 

frame. |
𝑑𝑅⃗ 

𝑑𝑡
| 𝑖 term is the same vector viewed by the rotating frame. And 𝛺⃗  is the 

angular velocity vector of the rotating frame. Therefore, the represantation of 

the equations of translational and angular velocities will become in terms of the 

scalar form: 

 

𝑉𝑝⃗⃗  ⃗ = 𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘⃗                                    (3-4) 

𝛺⃗ = 𝑝𝑖 + 𝑞𝑗 + 𝑟𝑘⃗                           (3-5) 

 

Where u, v, w are linear velocities and p,q,r are angular rates, roll,pitch and yaw 

respectively, on the on the corresponding i,j,k unit vector of the x,y,z body axes, 

respectively. The time rate of the velocity vector will be: 

 

𝑑𝑉𝑝⃗⃗ ⃗⃗  

𝑑𝑡
= 

𝑑𝑉𝑝⃗⃗ ⃗⃗  

𝑑𝑡
|𝑖 =  

𝑑𝑉𝑝⃗⃗ ⃗⃗  

𝑑𝑡
| 𝑟 + 𝛺⃗ 𝑥𝑉𝑝⃗⃗  ⃗                                (3-6) 

 

In equation (3-3), the rotating frame r is for the body axis frame. For 

rearranging the equation (3-5) and (3-6), the following terms are obtained. 

 

𝑑𝑉𝑝⃗⃗ ⃗⃗  

𝑑𝑡
|𝑖 = (𝑢̇ + 𝑞𝑤 − 𝑟𝑣)𝑖 + (𝑣̇ + 𝑟𝑢 − 𝑝𝑤)𝑗 + (𝑤̇ + 𝑝𝑣 − 𝑞𝑢)𝑘⃗                             (3-7) 
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Where the x component of equation (3-7) is equal to 
𝐹𝑥

𝑚
 , the force term on the x 

axis, the y component of equation (3-7) is equal to 
𝐹𝑦

𝑚
 , the force term on the y 

axis, the z component of equation (3-7) is equal to 
𝐹𝑧

𝑚
 , the force term on the z 

axis. 

 

Hence, the force vector represents the derived forces on x,y,z axes, respectively. 

Since the addition of these forces must be equal to the total forces in equation 

(3-1), they can be subtracted from each other in order to find the 𝑢̇, 𝑣̇, 𝑤̇ : 

 

𝑢̇ =
𝐹𝑥

𝑚
− 𝑤𝑞 + 𝑣𝑟                        (3-8) 

𝑣̇ =
𝐹𝑦

𝑚
− 𝑢𝑟 + 𝑤𝑝                        (3-9) 

𝑤̇ =
𝐹𝑧

𝑚
− 𝑣𝑝 + 𝑢𝑞                       (3-10) 

 

In equations (3-8), (3-9) and (3-10), translational state equations are derived in 

order to build a plant model. After defining the translational equations in body 

axes, the rotational terms can be expressed mathematically with illustrated by 

p,q,r: 

 

𝐻⃗⃗ = 𝐼𝛺⃗                                     (3-11) 

 

Where, I  is the mass moment of inertia matrix of the aircraft. 

 

[

𝐻𝑥

𝐻𝑦

𝐻𝑧

] = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑥𝑦 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] [
𝑝
𝑞
𝑟
]                                   (3-12) 

 

In equation (3-12), 𝐻𝑥, 𝐻𝑦, 𝐻𝑧 are the angular momentum x,y,z components, 

respectively. In order to find the moments acting to the body, the angular 

momentum must be differentiated with time according to inertial frame, like in 

equation (3-7). 
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𝑑𝐻⃗⃗ 

𝑑𝑡
|𝑖 = (𝐼𝑥𝑥𝑝̇ − 𝐼𝑥𝑧𝑟̇ − 𝐼𝑥𝑧𝑝𝑞 + 𝐼𝑧𝑧𝑞𝑟 − 𝐼𝑦𝑦𝑞𝑟)𝑖  

              +(𝐼𝑦𝑦𝑞̇ + 𝐼𝑥𝑥𝑟𝑝 − 𝐼𝑥𝑧𝑟
2 + 𝐼𝑥𝑧𝑝

2 − 𝐼𝑧𝑧𝑟𝑝)𝑗                               (3-13) 

               +(−𝐼𝑥𝑧𝑝̇ − 𝐼𝑧𝑧𝑟̇ + 𝐼𝑦𝑦𝑝𝑞 − 𝐼𝑥𝑥𝑝𝑞 + 𝐼𝑥𝑧𝑟𝑞)𝑘⃗   

 

By getting a closed form of equation (3-13), the total moments can be 

represented on x,y,z axes respectively. 

 

∑𝑇𝑜𝑡𝑎𝑙 𝑀𝑜𝑚𝑒𝑛𝑡𝑠 = 𝑀𝑥𝑖 + 𝑀𝑦𝑗 + 𝑀𝑧𝑘⃗                       (3-14) 

 

The reason of these mathematical operations is to obtain the rotational state 

equations like it is done on the translational state equations. 

 

𝑝̇ =
𝑀𝑥

𝐼𝑥𝑥
+ (𝐼𝑦𝑦 − 𝐼𝑧𝑧) ∗

𝑞𝑟

𝐼𝑥𝑥
+

𝐼𝑥𝑧

𝐼𝑥𝑥
(𝑝𝑞 − 𝑟̇)                                                                    (3-15) 

𝑞̇ =
𝑀𝑦

𝐼𝑦𝑦
+ (𝐼𝑧𝑧 − 𝐼𝑥𝑥) ∗

𝑟𝑝

𝐼𝑦𝑦
+

𝐼𝑥𝑧

𝐼𝑦𝑦
(𝑟2 − 𝑝2)                 (3-16) 

𝑟̇ =
𝑀𝑧

𝐼𝑧𝑧
+ (𝐼𝑥𝑥 − 𝐼𝑦𝑦) ∗

𝑝𝑞

𝐼𝑧𝑧
+

𝐼𝑥𝑧

𝐼𝑧𝑧
(𝑝̇ − 𝑞𝑟)                     (3-17) 

 

The results of the equations above give the rotational state equations of the 

aircraft in body axes. 

 

3.4 Aerodynamic Forces and Moments 

 

Normally, the main principle and important term of the aerodynamic forces are 

aerodynamic coefficients which are all unique for each aircraft. However, there 

is also atmospheric effects acting to the body. When all of these effects are taken 

into account, the first step is the dynamic pressure term. 

 

𝑄̅ =
1

2
𝜌𝑉𝑝

2                    (3-18) 

 

Where 𝜌 is the air density and 𝑉𝑝 is the total aircraft velocity. 
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Then, the aerodynamic forces can be defined on the stability axes of the aircraft. 

If they are expressed mathematically, Xs, Ys and Zs  become the force 

components with respect to xs, ys and zs ,stability axes. 

 

𝑋𝑠 =
1

2
𝜌𝑉𝑝

2𝐶𝐷                  (3-19) 

𝑌𝑠 =
1

2
𝜌𝑉𝑝

2𝐶𝑌                   (3-20) 

𝑍𝑠 =
1

2
𝜌𝑉𝑝

2𝐶𝐿                   (3-21) 

 

Where,  𝐶𝐷 is the drag coefficient 

                𝐶𝑌 is the side-force coefficient 

    𝐶𝐿 is the lift coefficient 

 

The coefficients are all dependent of other parameters. Therefore, they can be 

written as: 

 

𝐶𝐷 = 𝐶𝐷0
+ 𝐶𝐷

𝐶𝐿
2𝐶𝐿

2 + 𝐶𝐷𝑓𝑙𝑎𝑝𝑠
+ 𝐶𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠

              (3-22) 

𝐶𝑌 = 𝐶𝑌𝛽
𝛽 + 𝐶𝑌𝛿𝑟

𝛿𝑟                    (3-23) 

𝐶𝐿 = 𝐶𝐿0
+ 𝐶𝐿𝛼

𝛼 + 𝐶𝐿𝛿𝑒
𝛿𝑒 + 𝐶𝐷𝑓𝑙𝑎𝑝𝑠

+ 𝐶𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠
             (3-24) 

 

Where, 𝛿𝑒 , 𝛿𝑟  are the control surface deflections which are the significant 

parameters for flight control systems. 

 

For the same principle like aerodynamic forces, the aerodynamic moments are 

also dependent of dynamic pressure and moment coefficients. They can be 

expressed as 𝐿𝑠, 𝑀𝑠 𝑎𝑛𝑑 𝑁𝑠  with respect to stabilty axes 𝑥𝑠 , 𝑦𝑠 𝑎𝑛𝑑 𝑧𝑠 , 

respectively. 

 

𝐿𝑠 =
1

2
𝜌𝑉𝑝

2𝑆𝑏𝐶𝑙                  (3-25) 

𝑀𝑠 =
1

2
𝜌𝑉𝑝

2𝑆𝑐𝐶𝑀                  (3-26) 

𝑁𝑠 =
1

2
𝜌𝑉𝑝

2𝑆𝑏𝐶𝑁                  (3-27) 
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Where, 𝐶𝑙, 𝐶𝑀 𝑎𝑛𝑑 𝐶𝑁 are the aerodynamic coefficients, S is the wing area, b is 

the wing span length and c is the cord length of the wing. The coefficients are 

dependent of other state parameters like it is illustrated on the forces section. 

 

𝐶𝑙 = 𝐶𝑙𝛽
𝛽 + 𝐶𝑙𝑝𝑝̅ + 𝐶𝑙𝑟𝑟̅ + 𝐶𝑙𝛿𝑎

𝛿𝑎 + 𝐶𝑙𝛿𝑟
𝛿𝑟                (3-28) 

 

Where, 𝛿𝑎 is the aileron displacement which is one of the control surfaces along 

the x-axis. 

 

𝑝̅ =
𝑏

2𝑉𝑝
𝑝𝑠 ; 𝑝𝑠 = 𝑝𝑐𝑜𝑠𝛼 + 𝑟𝑠𝑖𝑛𝛼                                               (3-29) 

 

𝑟̅ =
𝑏

2𝑉𝑝
𝑟𝑠 ; 𝑟𝑠 = −𝑝𝑠𝑖𝑛𝛼 + 𝑟𝑐𝑜𝑠𝛼                                                      (3-30) 

 

𝐶𝑀 = 𝐶𝑀0
+ 𝐶𝑀𝛼

𝛼 + 𝐶𝑀𝛿𝑒
𝛿𝑒 + 𝐶𝑀𝑞

𝑞̅ + 𝐶𝑀𝛼̇
𝛼̇′               (3-31) 

 

Where, 𝑞̅ =
𝑐

2𝑉𝑝
𝑞,  𝛼̇′ =

𝑐

2𝑉𝑝
𝛼̇    

𝐶𝑁 = 𝐶𝑁𝛽
𝛽 + 𝐶𝑁𝑝

𝑝̅ + 𝐶𝑁𝑟
𝑟̅ + 𝐶𝑁𝛿𝑎

𝛿𝑎 + 𝐶𝑁𝛿𝑟
𝛿𝑟               (3-32) 

 

3.5 Gravity Forces 

 

On the atmospheric environmetn, gravitational forces are acting on the body 

with a representation of mg, where 𝑚 is mass of the aircraft and 𝑔 is the 

gravitational acceleration along the 𝑧𝑒 axis. In order to represent the vector of 

gravitational forces on the body axes, the mathematical expression will be like 

below: 

 

𝑔𝑥 = −𝑚𝑔𝑠𝑖𝑛𝜃                  (3-33) 

𝑔𝑦 = 𝑚𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛Φ                                                            (3-34) 

𝑔𝑧 = 𝑚𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠Φ                                                            (3-35) 
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3.6 Translational Equations in Wind Axes 

 

In the Section 3.3, the translational equations of motion are represented in 

terms of body axes. As it is analyzed in the previous sections, aerodynamic 

forces and moments are dependent of 𝑉𝑝, 𝛼, 𝛽 parameters. In order to get these 

parameters, wind axes expressions of the translational equations of motion has 

to be explained, clearly.  

 

𝑉𝑝⃗⃗  ⃗ = 𝑉𝑝𝑖𝑤⃗⃗  ⃗                        (3-36) 

𝛺⃗ = 𝑝𝑤𝑖𝑤⃗⃗  ⃗ + 𝑞𝑤𝑗𝑤⃗⃗  ⃗ + 𝑟𝑤𝑘𝑤
⃗⃗⃗⃗  ⃗                  (3-37) 

𝑑𝑉𝑝⃗⃗ ⃗⃗  

𝑑𝑡
|𝑖 = 𝑉𝑝̇𝑖𝑤⃗⃗  ⃗ + 𝑟𝑤𝑉𝑝𝑗𝑤⃗⃗  ⃗ − 𝑞𝑤𝑉𝑝𝑘𝑤

⃗⃗⃗⃗  ⃗                       (3-38) 

 

Since the total forces are equalt to the equation (3-38), it can be represented as 

like below if the equations are rearrenged according to wind axes parameters: 

 

𝑉𝑝̇ =
𝐹𝑤𝑥

𝑚
                     (3-39) 

𝛼̇ =
(−𝑝𝑠𝑠𝑖𝑛𝛽+𝑞𝑐𝑜𝑠𝛽+

𝐹𝑤𝑧
𝑚𝑉𝑝

)

𝑐𝑜𝑠𝛽
                              (3-40) 

𝛽̇ = 𝑟𝑤 − 𝑟𝑠 = 𝑟𝑤 − (−𝑝𝑠𝑖𝑛𝛼 + 𝑟𝑐𝑜𝑠𝛼)                (3-41) 

 

The parameters angle of attack and side-slip angle can be expressed in terms of 

linear velocities: 

 

𝛼 = tan−1 𝑤

𝑢
                     (3-42) 

𝛽 = sin−1 𝑣

𝑉𝑝
                     (3-43) 

 

Where, the velocity term 𝑉𝑝 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑎𝑠  

 

𝑉𝑝 = √𝑢2 + 𝑣2 + 𝑤2                                   (3-44) 
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4. FLIGHT CONTROL SYSTEM OF THE AIRCRAFT 
 

By improvement of the technology, the aircrafts are developed in a very modern 

way. Especially, the fighter aircrafts are not easy to control by pilots. The reason 

of these conditions are the nonlinearity expressions, systems of the aircraft. For 

this reason, a control system had to be developed by means of controlling the 

aircrafts. These could be done via controlling following command of a ubsystem, 

engine or a control surface. 

 

The flight envelope, flight path, velocity of the aircraft has to be also controlled. 

The control system can be implemented for several subsystem as it is explained 

above. It can be applied to control the velocity via engines by controlling the 

throttle. For this case, throttle become a control parameter which can maket he 

velocity of the aircraft in total. 

 

The other and the most important subsystem is the control surfaces. They can 

be expressed like below in general: 

 

Aileron  : Controls the roll motion 

Elevator: Controls the pitch motion 

Rudder  : Controls the yaw motion 

 

In a result, when it is considered that the contents of the flight control system is 

a configuration of all these control elements which control the total forces and 

moments action on the aircraft. These are completed when the control surface 

and the effects of other elements are configured. The most important flight 

control principle are roll, pitch and yaw control. These controls are all 

dependent of the system parameters and control parameters. 

 

Furthermore, the aircraft can be also affected by the enviromental conditions 

changes, even if the pilot system feeds the correct inputs. In order to overcome 

this issue, the control system plays a cruical role, when it is considered this 

subject. 
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In conclusion, when all of these operations and manipulations are considered as 

automatically, here might be a control system such that it can consider, 

configure and operate all of the conditions in a proper way. There are some 

techniques to do that. In this chapter, these techniques are explained briefly.  

 

4.1. History of the Flight Control System 

 

At the beginning of 20th century, the technology of the aircrafts were developed 

by aerospace industry. One of the majör improvement of these technology was 

the pilot-aircraft interface which leads to control the whole aircraft. 

 

Firstly, which is very common example, Wright brothers developed was 

developed their systems. Fort he later years controlling the aircrafts became 

very hard, since the complexity of the system which is a nonlinear system and 

the defining the aerodynamical effects fort he aircraft. 

 

Second big progress was the development of the wind tunnel. This makes the 

characteristics of the aircraft in terms of mathematical expression. This leads to 

explaining the aerodynamical coefficients. Thus, the effect of aerodynamic 

coefficients to the aircraft were began to consider and expressed 

mathematically. As a result of this, the flight path, flight envelope and 

maneuvering capability of the aircraft were be able to control manually for the 

first time easily. By the improvement of technology and the control methods, it 

became automatically. In conclusion, the history of the control system got a very 

long and full of experiences way. 

 

4.2. Flight Control Methods 

 

By improvement of the technology and the aircraft complexity, the classical 

control methods became not enough fort he system. This was because of the 

amount of the control parameters and increasing performance issue, most 

importantly. Therefore, control methods were developed in time dramatically. 

In this chapter, some of the important methods will be explained. 
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4.2.1 Nonlinear dynamic inversion control method 

 

In general, linear control methods can not satisfy the specific conditions for the 

current aircraft flight envelope or maneuvre. The reason is that the states can 

change easily or the adaptivity of the control system can not catch the current 

state changes. In order to overcome this issue, nonlinear control methods were 

developed, since the aircraft Dynamics have highly nonlinear terms. Thus, the 

control system can easily adapt the state changes at each flight conditions or 

specified equilibrium states. 

 

The developed control systems were designed to catch the derivation of the 

inputs, surface deflections and the nonlinear states so that the following control 

coefficients or functions or parameters of the controller can response the 

changes easily. According to these developments and the applications, adaptive 

control method was named which contains all of definitions and expressions. 

After all, there is also a common control method which was named as dynamic 

inversion control. This method also satisfies the explained situations. A further 

explanation of the dynamic inversion method within the nonlinearity conditions 

is defined as Nonlinear Dynamic Inversion. This method is explained in the next 

chapter. 

 

Nonlinear Dynamic inversion control system is one of the common flight control 

method for the aircraft control systems. The principle depends on the feedback 

linearization (Albostan, 2017). Aircrafts have nonlinear behaviours in terms of 

the dynamics and motions. In the control systems, the structure has to be satisfy 

all of the nonlinear conditions without getting big amount of error so that th 

eaircraft can move on or flight within the specified path and envelope. 

Therefore, the control system contents have to be modelled mathematically. At 

the previous chapters, there were some methods which can overcome this 

subject. However, these operations were done by linearizing the whole system. 

Hence, the controller was also linear, since the controlled plant model was 

linearized. 
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In general, the main controller contains engine control throttle, control surface 

deflections and state feedbacks. Therefore, these parameters have to be 

modelled without any linearization methods so that they can feed back into 

controller inputs not by losing any characteristics in terms of dynamics. The 

main idea is the adaptivity of the control parameters in terms of nonlinearity. In 

this way, the robustness of the control system will be kept within the optimum 

conditions so that the performance will increase, eventually. 

 

Since the aircraft control systems has cascaded structure mostly, the response 

of the specific subsystems can mismatch the state changes. Therefore, in this 

study, NDI control method is designed as two stage in order to feed the outputs 

to the corresponding inputs of the subsystems. For this reason, similarity of the 

NDI and the feedback linearization method are explained mostly. 

 

The main principle is the making difference between reference inputs and 

feedback-states zero which means that the error will go to zero. By applying the 

method in this way, the inputs and corresponding outputs remain nonlinear. 

Since there is no linearization, the state-flow signals make their way with their 

original structure. The stages implemented to the NDI systems can be explained 

like below: 

 

Slow-State Dynamic Control Loop: Derives the reference angular rates 𝑝𝑐, 𝑞𝑐, 𝑟𝑐  

according to the given wind axes reference inputs 𝛼𝑐, 𝛽𝑐, 𝜇𝑐 

 

Fast-State Dynamic Control Loop: Derives the reference control surface 

deflections 𝛿𝑎, 𝛿𝑒 , 𝛿𝑟 according to the reference inputs which are coming from 

the slow-state dynamic control loop outputs. 

 

The mathematical background of NDI control method is explained in the next 

chapter. 
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4.2.1.1 Mathematical definitions 

 

Since NDI control method is similar to the feedback linearization as it was 

explained in the previous chapters, the mathematical expressions of this 

method can be represented like below: 

 

𝑋̇ = 𝐹(𝑋) + 𝐺(𝑋)𝑢                    (4-1) 

𝑦 = ℎ(𝑥)                       (4-2) 

 

Where, X is the state vector of the controlled part of the aircraft dynamics, G is 

an mxm input matrix, if it is not a square matrix, there will be a control allocation 

to  make it inversible, Y is the output of the controller and the H is nonlinear 

vector function. 

 

𝑢 = G−1[Ẋdes − F(X)]                   (4-3) 

 

U is the control vector of the controller. It is solved so that the input matrix and 

current states conditions will be satisfied for the case of adapting the stability. 

However,  sometimes G matrix is not a square matrix. 

 

In a further explanation, the structure of the control method will be like below: 

 

𝑦̇ =
𝛿ℎ

𝛿𝑥
𝐹(𝑥) +

𝛿ℎ

𝛿𝑥
𝐺(𝑥)𝑢                                                                               (4-4) 

 

Let, 

  

𝐴 =
𝛿ℎ

𝛿𝑥
𝐹(𝑥)                                                                                                     (4-5) 

𝐵 =
𝛿ℎ

𝛿𝑥
𝐺(𝑥)                                                                                                     (4-6) 

𝑢 =  𝐴−1[𝑣 − 𝐵]                    (4-7) 
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Where, 𝑣 is the pseudo control which is a virtual control. It is equal to the time 

derivative of the output vector 

 

The block diagram of this operation is shown in figure Figure 4.1: 

 

 
Figure 4.1 : Block diagram of NDI control loop 

 

In Equation (4-7), A matrix is not a square matrix, always. In such cases, there 

has to be applied some control allocation in order to apply matrix inversion 

lemma. If it is considered a non-square and an optimization issue is wanted to 

implement, there will be a cost function which will derive a control output 

vector. Equation (4-8) shows the cost function. 

 

𝐽 =  ∆𝑢𝑇𝑊∆𝑢                      (4-8) 

𝑦̇ = 𝑦𝑑𝑒𝑠̇                       (4-9) 

𝑦̇ = ℎ𝑥(𝑥0̇ + 𝐴(𝑥 − 𝑥0) + 𝐵0∆𝑢)                              (4-10) 

∆𝑢 = 𝑊−1𝐵ℎ
𝑇[𝐵ℎ𝑊

−1𝐵ℎ
𝑇]

−1
{𝑦𝑑𝑒𝑠̇ − ℎ𝑥[𝑥0̇ + 𝐴0(𝑥 − 𝑥0)]}                           (4-11) 

 

Where 𝐵ℎ is expressed as ℎ𝑥𝐵0 and 𝐵0 is expressed as 
𝛿𝐺

𝛿𝑢
 mathematically. 𝑊 is 

the weighting matrix which is designed and choosed as a diagonal. The final 

control expression will be in equation (4-12) when the equation zz is 

rearrenged. 

 

∆𝑢 = 𝑊−1𝐵ℎ
𝑇[𝐵ℎ𝑊

−1𝐵ℎ
𝑇]

−1
(𝑦𝑑𝑒𝑠̇ − ℎ𝑥𝑥0)̇                              (4-12) 

∆𝑢 = 𝑢𝑐 − 𝑢0                                 (4-13) 
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From the equation (4-8) to (4-13), the matrix inverse lemma of A is solved. By 

this case, the optimum solution for the control vector u is also solved for the 

specified or reference input states. 

 

4.2.1.2 Designing the control law 

 

In previous chapter, general definition of NDI control method was explained 

briefly. In this chapter, the control law is applied to the aircraft. The controller 

consists of two state; the first one is the slow-state control loop which is fed 

with wind-axes reference inputs and derives the corresponding outputs, and the 

second one is the fast-state control loop which is fed from the outputs of the 

first state as a reference inputs. 

 

The first thing to design the control law for aircraft is that defining the state 

equations for the controller part. 

 

𝑉𝑝̇ =
1

𝑚
(−𝑍𝑠 + 𝑇𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽) − 𝑔𝑠𝑖𝑛𝛾                (4-13) 

𝛼̇ = 𝑞 − 𝑡𝑎𝑛𝛽(𝑝𝑐𝑜𝑠𝛼 + 𝑟𝑠𝑖𝑛𝛼) −
1

𝑚𝑉𝑝𝑐𝑜𝑠𝛽
(𝑍𝑠 + 𝑇𝑠𝑖𝑛𝛼) +

𝑔𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜇

𝑉𝑝𝑐𝑜𝑠𝛽
            (4-14) 

𝛽̇ =  −𝑟𝑐𝑜𝑠𝛼 + 𝑝𝑠𝑖𝑛𝛼 +
1

𝑚𝑉𝑝
(𝑌𝑠 − 𝑇𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽) +

𝑔𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜇

𝑉𝑝
             (4-15) 

𝛾̇ =
1

𝑚𝑉𝑝
(𝑍𝑠𝑐𝑜𝑠𝜇 − 𝑌𝑠𝑠𝑖𝑛𝜇 + 𝑇(𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝜇 + 𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝜇)) −

𝑔𝑐𝑜𝑠𝛾

𝑉𝑝
            (4-16) 

𝜇̇ =
𝑝𝑐𝑜𝑠𝛼+𝑟𝑠𝑖𝑛𝛽

𝑐𝑜𝑠𝛽
+

1

𝑚𝑉𝑝
(𝑌𝑠𝑐𝑜𝑠𝜇𝑡𝑎𝑛𝛾 + 𝑍𝑠(𝑠𝑖𝑛𝜇𝑡𝑎𝑛𝛾 + 𝑡𝑎𝑛𝛽) + 𝑇(𝑠𝑖𝑛𝛼𝑡𝑎𝑛𝛾𝑠𝑖𝑛𝜇 +

𝑠𝑖𝑛𝛼𝑡𝑎𝑛𝛽 − 𝑐𝑜𝑠𝛼𝑡𝑎𝑛𝛾𝑐𝑜𝑠𝜇𝑠𝑖𝑛𝛽)) −
𝑔𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜇𝑡𝑎𝑛𝛽

𝑉𝑝
              (4-17) 

𝜒̇ =
1

𝑚𝑉𝑝𝛾
(𝑍𝑠𝑠𝑖𝑛𝜇 + 𝑌𝑠𝑐𝑜𝑠𝜇 + 𝑇(𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝜇 − 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝜇))            (4-18) 

𝑝̇ = 𝑎1𝑟𝑞 + 𝑎2𝑝𝑞 + 𝑎3𝐿𝑥 + 𝑎4𝑁𝑥                (4-19) 

𝑞̇ = 𝑎5𝑝𝑟 − 𝑎6𝑝
2 + 𝑎6𝑟

2 + 𝑎7𝑀𝑥                (4-20) 

𝑟̇ = 𝑎8𝑝𝑞 − 𝑎2𝑟𝑞 + 𝑎4𝐿𝑥 + 𝑎9𝑁𝑥                (4-21) 
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4.2.1.3 Slow-state control loop 

 

Slow-State control loop is designed as taking reference input as wind-axes parameters 

which are 𝛼, 𝛽, 𝜇, the following reference outputs 𝑝𝑐 , 𝑞𝑐  𝑎𝑛𝑑 𝑟𝑐 are inverted by feeding 

back the dynamic states. The mathematical expressions are defined below: 

 

[

𝛼𝑐̇

𝛽𝑐̇

𝜇𝑐̇

] = [

𝛼̇
𝛽̇
𝜇̇
]

𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

                 [

𝑝𝑐

𝑞𝑐

𝑟𝑐
]    Slow-State Dynamic Control Loop 

 

The terms 𝛼𝑐̇ , 𝛽𝑐̇ 𝑎𝑛𝑑 𝜇𝑐̇ are generated as gaining from angular proportional 

gains, 𝑤𝛼, 𝑤𝛽 𝑎𝑛𝑑 𝑤𝜇 . The matrix shown below is the weighting matrix, 𝑊1𝛼𝛽𝜇
, 

which consists of these proportional gains. The values of these gains for this loop are 

generally between 1~2 rad/s. 

 

[

𝛼𝑐̇

𝛽𝑐̇

𝜇𝑐̇

] = 𝑊1𝛼𝛽𝜇
[

𝛼𝑐

𝛽𝑐

𝜇𝑐

] = [

𝑤𝛼 𝑎12 𝑎13

𝑎12 𝑤𝛽 𝑎23

𝑎13 𝑎23 𝑤𝜇

] ∗ [

𝛼𝑐

𝛽𝑐

𝜇𝑐

]               (4-22) 

 

Where, 𝑎12, 𝑎13, 𝑎23 are off-diagonal weighting matrix terms which are generally 

set to zero. 

 

[

𝛼𝑐̇

𝛽̇𝑐

𝜇̇𝑐

] =  ([

𝑔𝛼

𝑔𝛽

𝑔𝜇

] + [
−𝑡𝑎𝑛𝛽 ∗ 𝑐𝑜𝑠𝛼 1 −𝑡𝑎𝑛𝛽 ∗ 𝑠𝑖𝑛𝛼

𝑠𝑖𝑛𝛼 0 −𝑐𝑜𝑠𝛼
𝑐𝑜𝑠𝛼/𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛼/𝑐𝑜𝑠𝛽

] ∗ [
𝑝
𝑞
𝑟
])             (4-23) 

 

Where, 

 

𝑔𝛼 =
1

𝑉𝑝∗𝑐𝑜𝑠𝛽
∗ (−𝐴𝑥 ∗ 𝑠𝑖𝑛𝛼 + 𝐴𝑧 ∗ 𝑐𝑜𝑠𝛼 + 𝑔 ∗ cos 𝛾 ∗ 𝑐𝑜𝑠𝜇)             (4-24) 

𝑔𝛽 = −𝑠𝑖𝑛𝛽 ∗
𝐴𝑥∗𝑐𝑜𝑠𝛼+𝐴𝑧∗𝑠𝑖𝑛𝛼

𝑉𝑝
+ 𝑔 ∗ cos 𝛾 ∗

𝑐𝑜𝑠𝜇

𝑉𝑝
              (4-25) 

𝑔𝜇 = 𝐴𝑦 ∗ 𝑐𝑜𝑠𝛽 ∗ 𝑐𝑜𝑠𝜇 ∗
𝑡𝑎𝑛𝛾

𝑉𝑝
+ (𝐴𝑥 ∗ 𝑠𝑖𝑛𝛼 − 𝐴𝑧 ∗ 𝑐𝑜𝑠𝛼) ∗

tan𝛾∗𝑠𝑖𝑛𝜇+𝑡𝑎𝑛𝛽

𝑉𝑝
− (𝐴𝑥 ∗ 𝑐𝑜𝑠𝛼 +

           𝐴𝑧 ∗ 𝑠𝑖𝑛𝛼) ∗
𝑡𝑎𝑛𝛾∗𝑐𝑜𝑠𝜇∗𝑠𝑖𝑛𝛽

𝑉𝑝
− 𝑔 ∗ 𝑐𝑜𝑠𝛾 ∗ 𝑐𝑜𝑠𝜇 ∗

𝑡𝑎𝑛𝛽

𝑉𝑝
                     (4-26) 
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𝐴𝑥, 𝐴𝑦 𝑎𝑛𝑑 𝐴𝑧 are the normal accelerations which are transform from the wind 

axis aerodynamic force equatins and body axis force equations. The Equations 

(4-24), (4-25) and (4-26) are generated from the state equations from the 

beginning of this chapter. In conclusion, according to equation (4-23), the 

expressions above can be inverted as the NDI control method so that the 

desired outputs can generate. 

 

[

𝑝𝑐

𝑞𝑐

𝑟𝑐
] = [

−𝑡𝑎𝑛𝛽 ∗ 𝑐𝑜𝑠𝛼 1 −𝑡𝑎𝑛𝛽 ∗ 𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼 0 −𝑐𝑜𝑠𝛼

𝑐𝑜𝑠𝛼/𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛼/𝑐𝑜𝑠𝛽
]

−1

([

𝛼𝑐̇

𝛽𝑐̇

𝜇𝑐̇

] − [

𝑔𝛼

𝑔𝛽

𝑔𝜇

])             (4-27) 

 

The block diagram of the slow-state control loop is shown in Figure 4.2 in terms 

of mathematical expression of MATLAB/Simulink program: 

 

 

4.2.1.4 Fast-state control loop 

 

Fast-State Control Loop is designed as inputs and inverted following outputs. 

The inputs of this state are generated from the slow-state control loop as 

reference, 𝑝𝑐, 𝑞𝑐 𝑎𝑛𝑑 𝑟𝑐 . In this control loop, there are aerodynamic Dynamics of 

the aircraft. Therefore, the aerodynamic forces and moments are mostly dealt 

with. The following output which is set of control surface deflections, 

𝛿𝑎, 𝛿𝑒 𝑎𝑛𝑑 𝛿𝑟 are generated from the state equations of aerodynamic forces and 

Figure 4.2 : Slow-state control loop diagram 
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moments. These control surfaces are corresponding to the general output of the 

controller so that they can be assumed as output state vector, 𝑦. 

 

[

𝑝𝑐̇

𝑞𝑐̇

𝑟𝑐̇

] =  [
𝑝̇
𝑞̇
𝑟̇
]

𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

                 [

𝛿𝑎̇

𝛿𝑒̇

𝛿𝑟̇

]    Fast-State Dynamic Control Loop  

 

The terms 𝑝𝑐̇, 𝑞𝑐̇ 𝑎𝑛𝑑 𝑟𝑐̇ are generated as gaining from angular proportional 

gains, 𝑤𝑝, 𝑤𝑞 𝑎𝑛𝑑 𝑤𝑟 . The matrix shown below is the weighting matrix, 𝑊1𝑝𝑞𝑟
, 

which consists of these proportional gains. The values of these gains for this 

loop are generally between 3~5 rad/s. 

 

[

𝑝𝑐̇

𝑞𝑐̇

𝑟𝑐̇

] = 𝑊1𝑝𝑞𝑟
[

𝑝𝑐

𝑞𝑐

𝑟𝑐
]  = [

𝑤𝑝 𝑎12 𝑎13

𝑎12 𝑤𝑞 𝑎23

𝑎13 𝑎23 𝑤𝑟

] [

𝑝𝑐

𝑞𝑐

𝑟𝑐
]                             (4-28) 

 

Where, 𝑎12, 𝑎13, 𝑎23 are off-diagonal of the weighting matrix terms, which are 

generally set to zero. 

 

[

𝑝𝑐̇

𝑞̇𝑐

𝑟̇𝑐

] =  ([

𝑔𝑝

𝑔𝑞

𝑔𝑟

] + [

𝐹𝑝𝛿𝑎
0 𝐹𝑝𝛿𝑟

0 𝐹𝑞𝛿𝑒
0

𝐹𝑟𝛿𝑎
0 𝐹𝑟𝛿𝑟

] ∗ [

𝛿𝑎

𝛿𝑒

𝛿𝑟

])               (4-29) 

 

Where, 

 

𝑔𝑝 =
(𝐼𝑧∗𝐿𝐿+𝐼𝑥𝑧∗𝑁𝑁)

𝐼𝑥∗𝐼𝑧−𝐼𝑥𝑧
2 +

(𝐼𝑥𝑧∗(𝐼𝑥−𝐼𝑦+𝐼𝑧)∗𝑝∗𝑞+(𝐼𝑧∗(𝐼𝑦−𝐼𝑧)−𝐼𝑥𝑧
2 )∗𝑞∗𝑟)

𝐼𝑥∗𝐼𝑧−𝐼𝑥𝑧
2              (4-30) 

𝑔𝑞 =
𝑀𝑀

𝐼𝑦
+

(𝐼𝑧−𝐼𝑥)∗𝑝∗𝑟+𝐼𝑥𝑧∗(𝑟
2−𝑝2)

𝐼𝑦
                (4-31) 

𝑔𝑟 =
𝐼𝑥𝑧∗𝐿𝐿+𝐼𝑥∗𝑁𝑁

𝐼𝑥∗𝐼𝑧−𝐼𝑥𝑧
2 +

(𝐼𝑥∗(𝐼𝑥−𝐼𝑦)−𝐼𝑥𝑧
2 )∗𝑝∗𝑞−𝐼𝑥𝑧(𝐼𝑥−𝐼𝑦)∗𝑞∗𝑟

𝐼𝑥∗𝐼𝑧−𝐼𝑥𝑧
2               (4-32) 

𝐹𝑝𝛿𝑎
=

(𝐼𝑥𝑧𝐶𝑙𝛿𝑎
+𝐼𝑥𝐶𝑁𝛿𝑎

)

𝐼𝑥𝐼𝑧−𝐼𝑥𝑧
2                   (4-33) 

𝐹𝑝𝛿𝑟
=

(𝐼𝑥𝑧𝐶𝑙𝛿𝑟
+𝐼𝑥𝐶𝑁𝛿𝑟

)

𝐼𝑥𝐼𝑧−𝐼𝑥𝑧
2                   (4-34) 
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𝐹𝑞𝛿𝑒
=

𝐶𝑀𝛿𝑒

𝐼𝑦
                       (4-35)                                             

𝐹𝑟𝛿𝑎
=

(𝐼𝑧𝐶𝑙𝛿𝑎
+𝐼𝑥𝑧𝐶𝑁𝛿𝑎

)

𝐼𝑥𝐼𝑧−𝐼𝑥𝑧
2                  (4-36) 

𝐹𝑟𝛿𝑟
=

(𝐼𝑧𝐶𝑙𝛿𝑟
+𝐼𝑥𝑧𝐶𝑁𝛿𝑟

)

𝐼𝑥𝐼𝑧−𝐼𝑥𝑧
2                               (4-37) 

 

The Equations from (4-33) to (4-37) are the mass moment of inertia terms. The 

mathematical expressions above can be inverted in order to form as the fast-

state control loop structure. Hence, the corresponding outputs 𝛿𝑎, 𝛿𝑒  𝑎𝑛𝑑 𝛿𝑟 can 

be fed to the aircraft Dynamics state subsystem so that the whole model can 

operate in an order. The block diagram of the fast-state control loop is shown in 

Figure 4.3. 

 

 

 

Figure 4.3 : Fast-state control loop 
 

4.2.2 Linear flight control methods 

 

Linearization is applied to the airframe model of the aircraft by using Taylor 

Series expansion method.  

 

𝑓(𝑥, 𝑦, 𝑧, … ) = 𝑓(𝑥0, 𝑦0, 𝑧0, … ) + (
𝜕𝑓

𝜕𝑥
)
𝑥=𝑥0

(𝑥 − 𝑥0) + (
𝜕𝑓

𝜕𝑦
)
𝑦=𝑦0

(𝑦 − 𝑦0) + (
𝜕𝑓

𝜕𝑧
)
𝑧=𝑧0

(𝑧 −

𝑧0) + ⋯   (neglected high-order terms)              (4-38) 

 

𝑓(𝑥, 𝑦, 𝑧, … ) = 𝑓(𝑥0, 𝑦0, 𝑧0, … ) + (
𝜕𝑓

𝜕𝑥
)
𝑥=𝑥0

𝛿𝑥 + (
𝜕𝑓

𝜕𝑦
)
𝑦=𝑦0

𝛿𝑦 + (
𝜕𝑓

𝜕𝑧
)
𝑧=𝑧0

𝛿𝑧 + ⋯     (4-39) 
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4.2.2.1 Linearization of longitudinal equations 

 

Since this study deals with the longitudinal motion control issue, the 

linearization consists of the longitudinal motion state equations of motions. 

Therefore, the desired and referenced or operating condition points are 

considered and applied to the model with linearization. The trim conditions are 

applied to the longitudinal motion in order to obtain linearized state-space 

equations. All the trim conditions are listed as follow: 

 

Trim Conditions: 

 

𝛽(𝑡) = 0  

𝑝(𝑡) = 0  

𝑟(𝑡) = 0  

Φ(𝑡) = 0                               (4-40) 

Vp(𝑡) = Vp0
= constant  

𝛼(𝑡) = 𝛼0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    

𝑞(𝑡) = 𝑞0 = 0  

𝜃(𝑡) = 𝜃0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡          

 

In this aircraft model, which is hypotetical supersonic aircraft, the level flight 

conditions are calculated as the angle of attach value has to be zero. Therefore, 

in Equation (4-40) , the value is assumed as 𝜶𝟎 = 𝟎. Hence, the derivation of the 

linearized longitudinal motion state equations can be simplified further like 

below: 

 

𝑉𝑝 = 𝑉𝑝0
+ 𝛿𝑣𝑝                  (4-41) 

𝛼 = 𝛼0 + 𝛿𝛼;                      (4-42) 

𝑞 = 𝑞0 + 𝛿𝑞;                       (4-43) 

𝜃 = 𝜃0 + 𝛿𝜃;                       (4-44) 
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According to the assumptions and the conditions in Equations from (4-41) to  

(4-44) , the above equations can be written as below for the sake of 

simplification: 

 

𝑉𝑝 = 𝑉𝑝0
+ 𝛿𝑣𝑝                  (4-45) 

𝛼 = 𝛿𝛼                     (4-46) 

𝑞 = 𝛿𝑞                     (4-47) 

𝜃 = 𝛿𝜃                     (4-48) 

 

The nonlinear version of the longitudinal motion equations are expressed in 

Equations (4-49) and (4-50). The velocity term, Vp and α, are expressed below 

according to above equations: 

 

𝑉𝑝̇ = ∑
𝐹𝑥𝑤

𝑚
=

𝐹𝐷+𝑃𝑥𝑠+𝐺𝑥𝑠

𝑚
                               (4-49)

      

𝛼̇ = 𝑞 + ∑
𝐹𝑧𝑤

𝑚
=

𝐹𝐿+𝑃𝑧𝑠+𝐺𝑧𝑠

𝑚
                              (4-50) 

 

And the pitching motion terms, q and θ, are expressed below like above 

equations: 

 

𝑞̇ =
𝑀𝑀

𝐼𝑦𝑦
                              (4-51)  

𝜃̇ = 𝑞                                (4-52) 

 

These nonlinear equations are ready to be linearized via Taylor Series 

expansion. The first thing is that considering the initial states and the trim 

conditions. So that, Equations (4-49) and (4-50) are linearized like below in 

order to get the perturbation expressions. Before starting to the linearization, 

when the equations are put in according to the equation (4-45), the result can 

be seen below: 

 

 𝑉𝑝̇ =
−0.5𝜌(𝑉𝑝0+𝛿𝑉𝑝)

2
𝑆

𝑚
(𝐶𝐷0

+ 𝐶𝐷
𝐶𝐿2

𝐶𝐿
2) +

(𝑃𝑥−𝑚𝑔𝑠𝑖𝑛𝜃)𝑐𝑜𝑠𝛼+(𝑃𝑧+𝑚𝑔𝑐𝑜𝑠𝜃)𝑠𝑖𝑛𝛼

𝑚
        (4-53) 
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When the same operations are applied for angle of attack and the pitch rate, the 

expressions can be seen below: 

 

𝛼̇ = 𝑞 +
−0.5𝜌(𝑉𝑝0+𝛿𝑣𝑝)

2
𝑆

𝑚
(𝐶𝐿0

+ 𝐶𝐿𝛼
𝛿𝛼 + 𝐶𝐿𝛿𝑒

𝛿𝑒) +
𝑔

𝑉𝑝0+𝛿𝑣𝑝
−

𝑃𝑥𝛿𝛼

𝑚(𝑉𝑝0+𝛿𝑣𝑝)
+ 𝑃𝑧/𝑚(𝑉𝑝0

+ 𝛿𝑣𝑝)         (4-54)  

𝑞̇ =
0.5𝜌(𝑉𝑝0+𝛿𝑣𝑝)

2
𝑆𝑐

𝐼𝑦𝑦
(𝐶𝑀0

+ 𝐶𝑀𝛼
𝛼 + 𝐶𝑀𝛿𝑒

𝛿𝑒) +
0.5𝜌(𝑉𝑝0+𝛿𝑣𝑝)𝑆𝑐

2𝐼𝑦𝑦
(𝐶𝑀𝑞

𝑞 + 𝐶𝑀𝛼̇
𝛼̇) +

𝑇𝑦

𝐼𝑦𝑦
          (4-55) 

𝜃̇ = δ𝑞                                         (4-56) 

 
If the expressions like 𝑐𝑜𝑠𝛼 𝑎𝑛𝑑 𝑐𝑜𝑠𝜃 ≅  1,   𝑠𝑖𝑛𝛼 𝑎𝑛𝑑 𝑠𝑖𝑛𝜃 ≅  𝛼are considered 

as these values the Equation (4-53) can be extracted by using Taylor Series 

expansion like below: 

 

𝛿𝑣𝑝
̇ =

−0.5𝜌𝑉𝑝0
2 𝑆

𝑚
(𝐶𝐷0

+ 𝐶𝐷
𝐶𝐿2𝐶𝐿0

2 ) +
−0.5𝜌𝑉𝑝0

2 𝑆

𝑚
(2𝐶𝐷

𝐶𝐿2𝐶𝐿0
𝐶𝐿𝛼

) 𝛿𝛼 +

−0.5𝜌𝑉𝑝0𝑆

𝑚
2 (𝐶𝐷0

+ 𝐶𝐷
𝐶𝐿2𝐶𝐿0

2 ) 𝛿𝑣𝑝 − 𝑔(𝛿𝜃 − 𝛿𝛼) +
𝑃𝑥

𝑚
+

𝑃𝑧

𝑚
𝛿𝛼                        (4-57) 

 

In Equation (4-54) can be also extracted like above: 

 

𝛿𝛼̇ = 𝛿𝑞 +
−0.5𝜌𝑉𝑝0𝑆𝐶𝐿0

𝑚
+

−0.5𝜌𝑆𝐶𝐿0

𝑚
𝛿𝑣𝑝 +

−0.5𝜌𝑉𝑝0𝑆𝐶𝐿𝛼

𝑚
𝛿𝛼 +

−0.5𝜌𝑉𝑝0𝑆𝐶𝐿𝛿𝑒

𝑚
𝛿𝑒 +

𝑔

𝑉𝑝0

−

𝑔

𝑉𝑝0
2 𝛿𝑣𝑝 −

𝑃𝑥

𝑚𝑉𝑝0

𝛿𝛼 +
𝑃𝑧

𝑚𝑉𝑝0

−
𝑃𝑧

𝑚𝑉𝑝0
2 𝛿𝑣𝑝                           (4-58) 

 

The Equations (4-57) and (4-58) can be simplified since the aircraft is desired to 

be in level flight. In this form, 𝛿𝑒 = 0. Hence, the Equations (4-57) and (4-58 can 

be expressed with the following assumptions: 

 

𝜌𝑉𝑝0
2 𝑆

2
(𝐶𝐷0

+ 𝐶𝐷
𝐶𝐿2𝐶𝐿0

2 ) + 𝑃𝑥 = 0  

𝜌𝑉𝑝0
2 𝑆

2
𝐶𝐿0

= 𝑚𝑔 + 𝑃𝑧  (𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑧 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑃𝑧 = 0)   

 

The new expression of the lift and drag coefficient can be derived by considering 

the expressions above: 

 



 

28 
  

𝐶𝐿̃ = 𝐶𝐿0
  

𝐶𝐷̃ = (𝐶𝐷0
+ 𝐶𝐷

𝐶𝐿2𝐶𝐿0

2 )  

 

For the pitching motion, pitch rate expression in Equation (4-55), is linearized 

below: 

 

𝛿𝑞̇ =
0.5𝜌(𝑉𝑝0)

2
𝑆𝑐

𝐼𝑦𝑦
𝐶𝑀0

+
0.5𝜌𝑉𝑝0𝑆𝑐

𝐼𝑦𝑦
2𝐶𝑀0

𝛿𝑣𝑝 +
0.5𝜌(𝑉𝑝0)

2
𝑆𝑐

𝐼𝑦𝑦
𝐶𝑀𝛼

𝛿𝛼 +
0.5𝜌(𝑉𝑝0)

2
𝑆𝑐

𝐼𝑦𝑦
𝐶𝑀𝛿𝑒

𝛿𝑒 +

0.5𝜌(𝑉𝑝0)
2
𝑆𝑐2

𝐼𝑦𝑦
𝐶𝑀𝑞

𝛿𝑞 +
0.5𝜌(𝑉𝑝0)

2
𝑆𝑐2

𝐼𝑦𝑦
𝐶𝑀𝛼̇

𝛿𝑎̇ +
𝑇𝑦

𝐼𝑦𝑦
                                                     (4-59) 

 

Finally, the total linearized longitudinal motion state equations can be written 

like below in general form: 

 

𝛿𝑣𝑝
̇ = 𝑎11𝛿𝑣𝑝 + 𝑎12𝛿𝛼 − 𝑎14𝛿𝜃                              (4-60) 

𝛿𝛼̇ = 𝑎21𝛿𝑣𝑝 + 𝑎22𝛿𝛼 + 𝑎23𝛿𝑞 + 𝑏2𝛿𝑒                                           (4-61) 

𝛿𝑞̇ = 𝑎31𝛿𝑣𝑝 + 𝑎32𝛿𝛼 + 𝑎33𝛿𝑞 − 𝑐32𝛿𝛼̇ + 𝑏3𝛿𝑒                          (4-62) 

𝛿𝜃̇ = 𝛿𝑞                                (4-63) 

 

These coefficients are expressed in Table 4.1 below: 

 

Table 4.1. State-space form coefficients 
 

𝑎11 = −
2𝑔𝐶𝐷̃

𝑉𝑝0𝐶𝐿
′, 

𝑎12 = −𝑔(1 − 2𝐶𝐷
𝐶𝐿
2𝐶𝐿𝛼

), 𝑎14 = −𝑔 

𝑎21 = −
2𝑔

𝑉𝑝0
2 , 𝑎22 = −

𝑔

𝑉𝑝0

[
𝐶𝐿𝛼

𝐶𝐿̃
+

𝐶𝐷̃

𝐶𝐿̃
], 𝑎23 = 1 

𝑎31 = 0, 
𝑎32 =

𝑚𝑔𝑐𝐶𝑀𝛼

𝐼𝑦𝑦𝐶𝐿̃

, 𝑎33 =
𝑚𝑔𝑐2𝐶𝑀𝑞

2𝐼𝑦𝑦𝑉𝑝0
𝐶𝐿̃

 

 

𝑏2 =
−𝑔𝐶𝐿𝛿𝑒

𝑉𝑝0
𝐶𝐿̃

, 

 

𝑏3 =
𝑚𝑔𝑐𝐶𝑀𝛿𝑒

𝐼𝑦𝑦𝐶𝐿̃

, 

 

𝑐23 =
−𝑚𝑔𝑐2𝐶𝑀𝛼̇

2𝐼𝑦𝑦𝑉𝑝0
𝐶𝐿̃
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The general matrix form is like below: 

 

𝐶𝑋̇ = AX + Bu                              (4-64) 

 

Where, 

 

𝐶 = [

1 0 0 0
0 𝑐23 0 0
0 0 1 0
0 0 0 1

], 𝐴 =  [

𝑎11 𝑎12 0 𝑎14

𝑎21 𝑎22 𝑎23 0
𝑎31 𝑎32 𝑎33 0
0 0 1 0

], 𝐵 = [

0
𝑏2

𝑏3

0

], 𝐵 = [

𝛿𝑣𝑝

𝛿𝛼
𝛿𝑞
𝛿𝜃

] and  

 

𝑢 = 𝛿𝑒  

 

4.2.2.2 Building linearized airframe model 

 

In previous chapter, the longitudinal state equations are linearized. So that, the 

airframe model can be developed in order to design a controller for the system. 

The matrix form in the previous chapter can be built in MATLAB/Simulink 

program to get an airframe model in Figure 4.4. 

 

 

 

Figure 4.4 : Linearized Airfram Model (Longitudinal Motion) 
 

Since this study deals with the longitudinal motion, the pitch angle 𝜃 behaviour 

with respect to the elevator displacement 𝛿𝑒 is important to analyze. Therefore, 
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the linearized equation of these two expression can be converted to the transfer 

function like below: 

 

𝑌𝜃𝛿𝑒(𝑠)

𝛿𝑒(𝑠)
=

(𝑏3−𝑐32𝑏2)𝑠
2+[𝑏2(𝑐32𝑎11+𝑎32)−𝑏3(𝑎11+𝑎22)]𝑠+𝑏3(𝑎11𝑎22−𝑎21𝑎12)−𝑏2𝑎32𝑎11

𝐷𝑒𝑛(𝑠)
     (4-65) 

 

Where, 

 

𝐷𝑒𝑛(𝑠) = 𝑠4 + (𝑐32 − 𝑎11 − 𝑎22 − 𝑎33)𝑠
3 + [𝑎11𝑎22 − 𝑎21𝑎12 + 𝑎33(𝑎11 + 𝑎22) −

𝑐32𝑎11 − 𝑎32]𝑠
2 + [𝑐32𝑎21𝑎14 + 𝑎32𝑎11 − 𝑎33(𝑎11𝑎22 − 𝑎21𝑎12)]𝑠 + 𝑎32𝑎21𝑎14  

 

When the pitching motion analyzed, it can be divided into two sections which 

are short-period and phugoid motion. At first, it is better to guarantee the 

stability for short-period apporximation, since the roots of the transfer 

operators are closer to the imaginary axis (border of the unstable region). If the 

stability is guaranteed in this motion period, the other periods can follow the 

reference commands in a stable way. The other reason of using the short-period 

appoximation at first is that the derivation of the velocity does not affect the 

angle of attack. Therefore, the designing of the controller can be studied with 

different velocity regims. 

 

 
𝑌𝜃𝛿𝑒

(𝑠)

𝛿𝑒(𝑠)
=

(
𝑏3−𝑏2𝑐32

𝑎22𝑎33−𝑎32
)𝑠+(

𝑏2𝑎32−𝑏3𝑎22
𝑎22𝑎33−𝑎32

)

𝑠[(
1

𝑎22𝑎33−𝑎32
)𝑠2+(

𝑐32−𝑎33−𝑎22
𝑎22𝑎33−𝑎32

)𝑠+1]
                       (4-66) 

  

𝑌𝜃𝛿𝑒
(𝑠)

𝛿𝑒(𝑠)
= 

−0.7206𝑠−0.5144

0.03087𝑠3+0.08553𝑠2+𝑠
                                 (4-67) 

 

4.2.2.3 Open-loop response of linearized airframe 

 

The characteristic equation of the Equation (4-67) has to be analyzed for the 

static stability in order to decide and understand whether the aircraft is stable 

in level flight or not. Root Locus method is used for analyzing the static stability. 

The Figure 4.8 shows the expression beyond the pole and zero branches of the 
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pitching motion of the linearized aircraft airframe. The result for the pithcing 

angle by feeding a small elevator discplacement motion can be seen in Figure 

4.5: 

 

 

Figure 4.5 : Time response of pitching angle and elevator displacement 
 

4.2.2.4 Open-loop response of linearized airframe with servo dynamic 

 

The further dynamic which will be applied to the inner loop pitching motion is 

the elevator servo dynamics. This dynamic leads to the system in a more reality 

analysis. The common servo dynamic in terms of transfer function expression is 

like below: 

 

𝑌𝑒𝑙𝑒𝑣𝑎𝑡𝑜𝑟(𝑠) =  −
10

𝑠+10
                               (4-68) 

 

When the Equations (4-67) and (4-68) are considered as the inner loop plant 

transfer operator, it is better to analyze the static stability by producting of 

these two equation, since they can be considered as a combined open-loop 

transfer function like in Figure 4.6. 

 

 

 

𝑌𝜃𝛿𝑒
(𝑠)

𝛿𝑒(𝑠)
= 
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Figure 4.6 : Block diagram of short-period approximation with elevator servo 
dynamic 

 

 
 

Figure 4.7 : Time response of pitching angle with respect to elevator 
displacement including elevator servo dynamic 

 

According to the Figure 4.7, the system more stable if it is compared with the 

Figure 4.5. The way which has to be followed should be changing the servo, so 

that the dynamic of this equipment is also changed, in order to get the pitching 

angle following the reference pitching angle.  

 

Since, the open-loop responses are studied, the control method can be chosen to 

design a suitable and optimum controller. There are several linear control 

methods such as Routh-Hurwitz Criteria, P.I.D controller, Root-Locus control 

method. In this study, Root-Locus control method is chosen because of the 

represantation of changing the parameters better than the other techniques. In 

the next chapter, the Root-Locus control method is implemented to the 

linearized airframe model. 

 

𝛿𝑒𝑖(𝑡) 𝛿𝑒 

𝑌𝑒𝑙𝑒𝑣(𝑠)𝑌𝜃𝛿𝑒
(𝑠)

𝛿𝑒(𝑠)
= 
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4.2.2.6 Implemention of Root-Locus method 

 

Since the open-loop responses are studied, the controller design should be 

applied to the airframe. Before considering the servo dynamic effect to the 

airframe, the short-period approximation characteristic can be seen below in 

Figure 4.8: 

 

 
Figure 4.8 : Root-Locus diagram of short-period approximation 

 

Since the dynamic of the servo actuators affect directly to the airframe in real, 

the system behaves more realistic. Therefore, choosing the right servos are 

getting important. The reason of that, choosing servo actuators affects the 

dynamic stability. It can be seen in Figure 4.9: 

 

 
Figure 4.9 : Root-Locus diagram of short-period approximation with servo 

Dynamics 
 

𝑌𝜃𝛿𝑒
(𝑠)

𝛿𝑒(𝑠)
= 

=
𝑌𝑒𝑙𝑒𝑣(𝑠)𝑌𝜃𝛿𝑒

(𝑠)

𝛿𝑒(𝑠)

= 
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4.2.2.7 Inner loop controller 

 

In order to get a closed-closed loop controller which is feeding the outer 

controller, the controller design is implemented to the airframe. 

 

 
 

Figure 4.10 : Block diagram of inner control loop 
 

When the Figure 4.10 is analyzed, the place of the controller coefficients can be 

estimated roughly in Root-Locus diagram. In order to get an optimum solution, 

the other control methods can be used, too. However, in this controller design, 

the coefficients can be estimated like below: 

 

𝐶(𝑠) =
𝐾(𝐶𝑑𝑠+1)

𝜏𝑠+1
                        (4-69) 

 

Inserted pole to the airframe is :  𝑠 = −1/𝜏 

Inserted zero to the airframe is :  𝑠 = −1/𝐶𝑑  

 

When the inserted pole and zeros are placed into the Root-Locus diagram, the 

approximate control can be applied to the inner loop. In Figure 4.11, the point A 

can be chose as an inserted additional zero-branch position for the airframe 

within the scope of 𝑠 = −
1

𝐶𝑑
. 

𝛿𝑒 𝛿𝑒𝑖  
𝑒𝑟𝑟𝑜𝑟 
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Figure 4.11 : Root-Locus diagram of inner loop controller (zero) 
 

The inserted pole branch is placed a little far away from the pole at negative 

side, which is shown in Figure 4.12 with red star. In this case, the integrated 

pole goes to negative infinity asymptote, and the conjugate pole pair can be 

forced to diverge from the imaginary axis which is unstable region critical area. 

So that, two pole branches go to the other asymptotes by staying at the negative 

side of the Root-Locus diagram. This leads to the system for choosing controller 

gain without any doubt in terms of stability. The expression of this manipulation 

is explained graphically below: 

 

 
 

Figure 4.12 : Root-Locus diagram of inner loop controller (pole-zero) 
 

=
𝑌𝑒𝑙𝑒𝑣(𝑠)𝑌𝜃𝛿𝑒

(𝑠)

𝛿𝑒(𝑠)

= 

A 

Approximate  

Break-in point 
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The approximate places of the inserted pole and zero branches are shown at 

Figure 4.12. The remain proportional constant can be chose from the lines 

which are going to the asymptotes, freely in every bound, since the system is 

stable for each condition of this flight regime. A rough controller design can be 

analyzed in this way. However, in order to choose a proper and optimum 

solution for the inner loop. The total closed-loop transfer function is expressed 

below: 

 

𝐺𝑖𝑛𝑛𝑒𝑟(𝑠) = 𝐶(𝑠)𝑌2(𝑠)𝑌𝜃𝛿𝑒
(𝑠) =

𝐾(𝐶𝑑𝑠+1)(7.206𝑠+5.144)

(𝜏𝑠+1)(0.03087𝑠4+0.3942𝑠3+1.855𝑠2+10𝑠)
               (4-70) 

 

Implementing the reasonable pole and zero branch positions for the above 

closed-loop transfer function, 𝐺𝑖𝑛𝑛𝑒𝑟(𝑠), the following controller constants can 

be established: 

 
𝜏  = 0.05   
𝐶𝑑 = 0.2  
 

Above results for the controller coefficients leads to the total system in Root-

Locus diagram like below in Figure 4.13: 

 

 
Figure 4.13 : Root-Locus diagram of inner loop controller (desired) 
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The Root-Locus diagram in Figure 4.13, is not comparable with the desired one 

at Figure 4.12. This is not a reliable solution for this plant, because the system 

can behaves unstable motion at some trim and reference conditions. Therefore, 

the conjugate pole pairs can be forced to the negative right hand side (stable 

region) by one more inserting same additional pole and zero branches. This 

leads the systems to an expression like in Equation (4-71): 

 

𝐺𝑖𝑛𝑛𝑒𝑟(𝑠) = 𝐶(𝑠)𝑌2(𝑠)𝑌𝜃𝛿𝑒
(𝑠) =

𝐾(𝐶𝑑𝑠+1)2(7.206𝑠+5.144)

(𝜏𝑠+1)2(0.03087𝑠4+0.3942𝑠3+1.855𝑠2+10𝑠)
            (4-71) 

 

In above equation, the characteristic of the open-loop transfer function is 

expressed in Figure 4.14  with Root-Locus diagram: 

 

 
Figure 4.14 : Root-Locus diagram of inner loop controller (robust) 

 

In above diagram, the pole and zero branches behave like the system is in stable 

for most conditions. The proportional gain of the controller can be chose 

without any doubt of unstable conditions. It is analyzed and experienced that 

the 𝐾  gain satisfy the damping ratio with a reasonable result. In this 

combination of the “𝜏 𝑎𝑛𝑑 𝐶𝑑”,  𝐾 (proportional gain) can be chose as 0.629 with 

respect to 0.42 damping ratio, which is a good approach for a supersonic 

aircraft.  
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The difference of the first controller which is noted in Equation (4-70), and the 

second controller which is noted in Equation (4-71) is expressed in Figure 4.15 

in terms of the time responses. 

 
 

Figure 4.15 : Time response difference of first and second controller design 
 

4.2.2.8 Outer loop controller 

 

Since the inner loop control loop is established in a stable conditions, the outer 

loop of the altitude hold controller system beyond the longitudinal motion can 

be studied freely. For the simplicity, the closed-loop transfer function of the 

inner loop controller can be written as below: 

 

𝐺𝑖𝑛𝑛𝑒𝑟𝐶𝐿
(𝑠) =

𝐶(𝑠)𝑌2(𝑠)𝑌𝜃𝛿𝑒
(𝑠)

1+𝐶(𝑠)𝑌2(𝑠)𝑌𝜃𝛿𝑒
(𝑠)

=
0.1813𝑠3+1.942𝑠2+5.827𝑠+3.236

0.0001𝑠6+0.0041𝑠5+0.0749𝑠4+0.786𝑠3+4.798𝑠2+15.83𝑠+3.236
              (4-72)        

The outer loop consists of the following equations: 

 

ℎ̇ = 𝑉𝑝 sin(𝜃 − 𝛼) = 𝑉𝑝𝑠𝑖𝑛𝛾                    (4-73)  

 

Integrating the Equation (4-73) will lead to get the current altitude value of the 

system. When taking difference of the current and reference input of the 

altitude, the error is controlled with a proportional gain and feeding to the 

reference input of the inner control loop, which is 𝜃𝑟𝑒𝑓 . The outer loop 

controller gain can be found by using the same method of the inner loop control 
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system design. However, the inner loop is stablizing so fast. Therefore, the outer 

loop controller gain can be chose as the reducing the rank of the reference 

altitude input, since it is too big numerically with respect to the other inputs. 

The controller gain is chose with a constant value of 0.004 for the simplicity. 

 

4.2.2.9 Altitude-Hold flight controller 

 

The outer loop is designed as tracking the reference altitude input, the 

characteristic of the controller behaves as holding the altitude at the reference 

input. The total body diagram of the “Altitude-Hold Control System” is 

expressed in Figure 4.16: 

 
 

Figure 4.16 : Altitude-Hold flight control system block diagram 
 

The Frames A,B and C, which are represented in Figure 4.17, Figure 4.18 and 

Figure 4.19, are shown below respectively: 

 

 
 

Figure 4.17 : Frame A 

Frame A 

Frame B 
Frame C 
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Figure 4.18 : Frame B 
 

 

 
 

Figure 4.19 : Frame C 
 

Following example shows that the given reference altitude is stabilized rapidly 

by analyzing the Figure 4.20: 
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Figure 4.20 : Time response of altitude 
 

The corresponding pitching motion angles and elevator displacement of the 

plant can be seen in Figure 4.21: 

 

 
 
Figure 4.21 : Time response of parameters in Altitude-Hold flight control system 
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5. CONCLUSION 
 

The stabilization of the short-period approximation for supersonic aircraft is 

completed in this study, at first. Total longitudinal airframe is linearized in 

order to analyze at steady, equilibrium points and to control with the 

conventional methods. The design of the controller is based on two stages, 

which are inner loop and outer loop controllers. The inner loop is dealt with 

making the longitudinal motion airframe steady at reference pitching motion. 

The controller design is completed via Root-Locus analysis. At first, a desirable 

controller is estimated for the current longitudinal motion airframe. Then, the 

proper controller gains are established by studying several controller designs 

according the desirable and reliable Root-Locus diagram behaviour. The 

suitable gains are chose to implement and complete the inner loop controller 

design. 

 

The outer loop controller design is based on keeping the calculated and 

measured altitude of the aircraft at the reference altitude input. Therefore, the 

altitude motion expressions are developed and formed so that the airframe 

gives the calculated output for feeding back to the reference input section. The 

evaluating the control variable for the control method is established by 

choosing the proportional control gain such as the rank of the altitude is 

acceptable and easy to be calculated by the controller numerically.  

 

In this study, the importance of stabilizing the short-period motion of the 

aircraft is experienced. The reason of using this motion of study is that it makes 

the aircraft moves around the critical regions. In terms of Root-Locus diagram, 

the steady-state response of the aircraft is close to the imaginary axis, which is 

critical limit of the unstable region. Therefore, the importance of stabilizing this 

motion leads to guaranteed stable motion of the aircraft at each longitudinal 

flight regimes. The other reason is that the velocity component of the airframe 

does not affect to the angle of attack. Hence, the derivation of the velocity does 

not affect to the longitudinal motion, which means that the analyzing of this 

motion can be easy to study. It can be worked at every flight velocity regimes. 
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6. FUTURE WORKS 
 

Nonlinear Dynamic Inversion method is designed in this study. However, the 

model is not simulated. The future works are corresponding to the simulation of 

Nonlinear Dynamic Inversion method application. The results of the NDI 

simulation will be compared with the Altitude-Hold Flight Controller, which is 

built and simulated in this study. 
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