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ABSTRACT
M.Sc. Thesis

SYSTEM IDENTIFICATION AND ESTIMATION DOMINANT PARAMETERS OF
AIRCRAFT LINEAR DYNAMICAL MODEL VIA RECURSIVE LEAST SQUARE
METHOD

Mehmet SAHIN

Istanbul Commerce University
Graduate School of Applied and Natural Sciences
Department of Mechatronic Engineering

Supervisor: Prof. Dr. Muammer KALYON
2021, 101 pages

In order to examine the behavior of a system, its mathematical model must be
extracted. System identification methods are needed to extract the mathematical
model. Thus, with the system identification process, the mathematical models of
systems with certain inputs and outputs are defined.

In this study, the analysis of the transfer functions, which are formed as a result
of the behavior of an aircraft, with the system definition methods, in the
MATLAB/Simulink program.

Parameter estimation methods were used as the system identification method
and comparisons were made between the methods and correct results were tried
to be achieved.

Parameter methods used in aviation are generally the methods that make real-
time parameter estimation in order to give more accurate results. The first of
these is the recursive least squares method, which is generally emphasized in this
thesis. In addition, the least squares method, which is not used in real time, is
explained in detail.

In order to prove that the recursive least squares method gives more accurate
results, the analyzes made with both recursive least squares and least squares
are compared and examined and ISE (Integral Square Error) table is prepared to
observe the error rate. Thus, the success of the recursive least squares method
has been observed and it has been understood that it gives more realistic results.

Keywords: Aerodynamic parameters, aircraft control surfaces, least square
method, recursive least square method, system identification.
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OZET
Yiiksek Lisans Tezi

SISTEM TANIMLAMA VE OZYINELi EN KUCUK KARELER METODU iLE
DOGRUSAL DINAMIK UCAK MODELINiN DOMINANT PARAMETRELERININ
TAHMIN EDIiLMESi

Mehmet SAHIN

Istanbul Ticaret Universitesi
Fen Bilimleri Enstitiisii
Mekatronik Miihendiligi Anabilim Dali

Danisman: Prof. Dr. Muammer KALYON
2021, 101 sayfa

Bir sistemin davranislarinin incelenebilmesi i¢in matematiksel modelinin
cikarilmasi gerekmektedir. Matematiksel modelin de ¢ikarilabilmesi i¢in sistem
tanimlama metodlarina ihtiya¢ duyulur. Béylece sistem tanimlama islemi ile belli
giris ve ¢ikisi olan sistemlerin matematiksel modelleri tanimlanmaktadir.

Bu c¢alismada, bir hava aracinin davranislar1 neticesinde olusan transfer
fonksiyonlarinin  sistem tanimlama metodlar1 ile MATLAB/Simulink
programinda analizleri yapilmistir.

Sistem tanimlama yontemi olarak parametre tahmin metodlar kullanilmis ve
metodlar arasinda kiyaslar gerceklestirilmistir ve dogru sonuclara ulasilmaya
calisilmistr.

Havacilikta kullanilan parametre metodlari daha dogru sonug¢ vermesi agisindan
genelde gercek zamanli paramtre tahmini yapan metodlardir. Bunlarin basinda
da bu tezde genel olarak tizerinde durulan 6zyineli en kiiciik kareler metodudur.
Ayrica gercek zamanli olarak kullanilmayan metod olan en kii¢iik kareler metodu
da detayl sekilde anlatilmistir.

Yapilan ¢alismalarda 6zyineli en kiiciik kareler metodunun daha dogru sonuglar
verdiginin ispatlanmasi icin hem 6zyineli en kii¢lk kareler hem de en kiiglik
kareler ile yapilan analizler kiyaslanarak incelenmis ve hata oranini
gozlemleyebilmek icin ISE (Integral Square Error) tablosu ¢ikarilmistir. Boylece
ozyineli en kiiciik kareler metodunun basarisi goriilmiis ve daha gercege yakin
sonuglar verdigi anlagilmistir.

Anahtar Kelimeler: Aerodinamik parametreler, en kiiciik kareler metodu,
ozyineli en kiiciik kareler metodu, sistem tanimlama, ugak kontrol ytizeyleri.
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1. INTRODUCTION

Systems are structures based on observation or certain measurements, where
there is an input or effect, and that generate an output or response according to
input or effect. In Figure 1.1 shows the general structure of the system. Thus, the
concept of system definition is defined as revealing systems and developing
mathematical models for these systems. That is, system identification is the
creation of a mathematical model as a result of measurements of input and output
signals. In other words, system identification is a discipline that provides the
most appropriate representation for a system and responds to the reverse
problem when system behavior is examined as a result of many observations
(Jategaonkar, 2006). The inverse problem, namely system identification, has
been an essential element of identifying any system under consideration and

having the knowledge to examine that system.

> System >

Figure 1.1. System definiton

Aviation is one of the areas where system identification is used most widely and
effectively. Generally, system identification is used for multiple applications such
as flight analysis, flight control design, estimation of equations and parameters
resulting from flight behavior, and verification of experimental data. We
described the system in the previous paragraph. Accordingly, it is a system with
entries and exits in the aircraft. performs the closest mathematical modeling job
to this system in system identification. As a result of the collected experimental
results, more than one data is processed and the functions that will occur for the

analysis of the aircraft's behavior are defined.

In this thesis, various methods are mentioned to create mathematical models of
systems. First, the system identification tool of the MATLAB/Simulink program

was explained and the result of an aircraft on the equation of motion was



examined. Then, parameter estimation methods, which are the main mentality of
the study, are explained. Figure 1.2 shows the creation of a system model with a

general aircraft system and parameter estimation algorithm.

Input
——
_ Svstem
Modelmput | model Model output
Model
parameters
Parameter
Identification
algorithm Output error

Figure 1.2. System model and parameter estimaiton algorithm

RLS method, which is one of the parameter estimation methods, is emphasized.
Since the RLS method is a real time parameter estimation method, it is widely
used in the aviation field in order to give more accurate results than other
methods. For this reason, to show the effectiveness of the RLS method, analyzes
were made on an aircraft with the LS method, which is a non-real-time parameter
estimation method. In this context, the behavior functions resulting from the
behavior of the aircraft control surfaces were extracted. These functions were
examined with both LS and RLS and their comparisons were analyzed in
MATLAB/Simulink program and the parameter estimation, which is the system
definition, which generally expresses the essence of the study, was performed. In
addition, pole zero maps were created in order to give information about the
examined transfer functions and system. After the transfer functions were
analyzed and estimated by both methods, some dominant aerodynamic
parameters involved in the formation of these transfer functions were also

estimated.



2. LITERATURE REVIEW

Evans (2001), explained various system identification techniques used in
modeling dynamic equations of aircraft gas turbine engines. have used more than
one system ide ntification technique in their studies. They tried to explain the
dynamic model of gas turbine engines used in aircraft with methods such as

frequency identification method and least square method.

DeBusk et al. (2009), described the real-time definition of the dynamic model of
an aircraft with instantaneous data received during flight. used the recursive FTR
method to estimate the parameters of the dynamic model of an aircraft. They
defined the FTR method in the frequency domain as an extension of the LS

method and expressed the algorithm of the LS parameter estimation method.

Kamali et al. (2011), explained the analysis, evaluation and results of the RLS
method, which is the parameter estimation method used in flight control and
testing and in real-time applications. In their studies, they stated that online
prediction algorithms are necessary for the reproducible flight control
mechanism and that they come to the fore because of more efficient results in test
processes. They described various parameter estimation algorithms and made
comparisons on stabilized version of DFT and RLS method. They stated that the
RLS method was more effective in dense and repetitive calculations and they

made the estimation of an aircraft parameters by methods.

Scheper et al. (2013), made a system identification study to obtain a
mathematical model of a fixed wing aircraft. In their work, they explained the
aerodynamically model of the aircraft and the data acquisition to be used in
system identification studies. Subsequently, they used the output error method,
the maximum likelihood parameter approximation method, to estimate the

model parameters.

Grauer and Morelli (2016), made the estimation of unknown parameters to

create a mathematical model from the measured data for an aircraft using the RLS



method, one of the parameter estimation methods used in the aviation field. They
also explained the LS method along with the RLS method in their work. They
stated that the LS method is widely used in terms of simplicity and efficiency and
firstly explained the algorithm of the LS method. They stated that LS method is
used for parameter estimation after all data collection processes are completed,
that is, after data is collected. Later on, they gave the algorithm of the RLS method
due to the fact that the aircraft is also a dynamic system due to this reason and
they explained that real-time parameter estimation can be made while collecting

flight test data.

Qadrietal. (2016), explained the LS and RLS parameter estimation methods and
the study of estimating the mathematical model of a waraircraft due to its
complex and unpredictable motions. presented the calculation of aerodynamic
parameters using both methods in their work. They firstly explained the
dynamics, coordinate system and equation of motion of the waraircraft.

Subsequently, they explained prediction algorithms, LS and RLS methods.

Hardier et al. (2016), followed the model parameters of the aircraft with the RLS
method in terms of designing the flight control of a civil aircraft. In their studies,
they worked in the frequency domain to monitor parameters that change over

time and expressed the expressions in the frequency domain recursively.

Cetin (2018), explained the analysis of data collected with a flight simulation
program for aircraft system modeling. made use of the system identification
techniques used in the flow of time. The models obtained by the system
identification method were compared with the data obtained from the simulation
program and the accuracy of the model formed as a result of the system

identification was observed.

Simmons (2018), explained the development of a flight dynamic model for a fixed
wing unmanned aerial vehicle using the system identification technique. He
explained that he uses various parameter estimation methods and the data

collection system he uses to collect data before the stage of system identification.



Grauer and Boucher (2020), explained from measured input and output data to
flight dynamic models and estimation of parameters in the model. They utilized
the frequency domain approach in their studies and estimated the parameters

using the maximum likelihood method.



3. MATHEMATICAL MODEL OF AN AIRCRAFT

Aircraft is a driven system that can move and rise while holding it in the air, with
the help of air flow creating pressure under the wings. The main parts of the
aircraft are the wings that keep the wings in the air, the tail to keep the wings in
balance, the control surfaces that change the position and position of the aircraft,
and the engine and propeller that provide the necessary propulsion. We need a
mathematical model of the aircraft to be able to control the behavior that occurs
as a result of all changes of these elements on the aircraft, and to model and
observe the results. Hence, we need to know the mathematical models of aircraft
so that we can examine and interpret the behavior of aircraft, so that we can

control and model them.

The aircraft mathematical model becomes straightforward when the equations
that make the aircraft move are understood. The equations that drive the

airaircraft can be derived mainly from the laws of kinetics and kinematics.

The first step in developing a 6 DoF (degree of freedom) nonlinear model for an
aircraft is to develop the mathematical model that describes the aircraft
dynamics and environment. The mathematical model consists of the
development and explanation of aircraft motion equations (dynamic model) and
aerodynamic force and moment equations. The following sections describe these
equations. In Figure 3.1, the forces and angles that we will encounter while
explaining the mathematical model of the aircraft are shown. In Figure 3.1, the
equations that we will explain for the mathematical model of the aircraft, and the
forces and angles that will appear. The mathematical model of the aircraft was
constructed based on the book “Aircraft Control and Simulation” by Stevens,
Lewis and Johnson (Stevens, et al. 2016) and “Aircraft System Identification:

Theory and Practise” by Klein and Morielli (Klein and Morielli, 2006).



Tlm (positive upwards)

Drag
{positive rearwards) All directions shown are positive
‘\ U, V, R are the forward, side and yawing velocities
L, M, N are roll, pitch and yaw moments
P. Q, R are the angular velocities,
roll, pitch and yaw

®. 0, ¥ are roll, pitch and yaw angles
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s ot
Ya P L.P®
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(positive forwards)

Figure 3.1. Aircraft freebody diagram (McLean, 1990)

3.1. Definition of Aircraft State Space Vectors

In this section, the equations of motion of a rigid aircraft are tried to be derived

and expressed in state-space form:
X=fXU)
X is the (n x 1) state vector, U is the (m x 1), and f is a vector- valued nonlinear

function of the individual states and controls. This vector equation characterized

the n first order, coupled simple differential equations.

Xl = fl(X1’X2’ e .,Xn, Ul' seray Um)

Xn = folX1,Xo) oo, X, U,y e, Upy)
Where the f; symbolize different nonlinear functions of the n state variables, X;,

and m inputs, U; After defining the state equation, an output equation of the

general form is defined.

Y =g9(X,U)



where Y is a (px1) output vector and g represents a set of nonlinear equations
similar to f. The state variables, X;, will be any set of variables that completely

define the state.

Large symbols will be used for state, control, and output vectors and variables
derived from them. because at this stage it will show the actual values of the

aircraft variables.

X = Ax + Bu

In this expression, the reason why the state and control vectors are expressed in
lowercase indicates that they are perturbations from the equilibrium from
equilibrium. As stated in the expression, the "A-matrix" is the square matrix in the
state space form, and the "B-matrix" has the size determined by the number of

states and controls.

The aircraft velocity, position, force and moment, actuator control input state
space vectors are explained according to the logic of expressing the space state

vectors in the following sections.

3.1.1. Vector of aircraft velocity

Parameters are defined by forming a aircraft velocity vector. Firstly, the aircraft
velocity vector was constructed in order to derive the equations of motion. The
meanings of the parameters were specified according to the motion of the aircraft
to be used in the explanation of the dynamic equations of the aircraft. Velocity

vector of the aircraft is depicted in (3.1).

 velocity in forward direction

u
[v] velocity in transverse direction
w velocity in verticle direction
= . (3.1)
p rate of roll motion
qu rate of pitch motion
r rate of roll motion



3.1.2. Vector of aircraft position

This section describes the position vector of the state space form of the aircraft.

For aircraft it is common to use the following body-fixed coordinate systems:

e Body axes
e Stability axes

e Wind axes

In Figure 3.2 and Figure 3.3 shown the axis system of the aircraft. In Figure 3.3,

is the angle of attack and f is the side slip angle.

\ 1 ;"
& > %
S 3 f/": T —— r-‘

Figure 3.2. Body axis system

( v NP 2 (8z0T)
v ol ¥

- X~ AXE
2-ANS - (Stamuny)

XA
(WIND)

Figure 3.3. Stability and wind axes (Stevens and Lewis, 1992)



The angle of attack and the side slip angle are expressed by the velocity vectors

described in the previous section and given in (3.2) and (3.3) respectively.

w
tana = — (3.2)
. v
sinf = v (3.3)
Coordinates axes and Euler angles are also defined in (3.4).
rearth fixed x axis
earth fixed y axis
_ earth fixed z axis (3.4)

angle of roll
angle of pitch
angle of roll

€®e§§§$

3.1.3. Vector of forces and moments

In this section, the aircraft force and moment vectors are expressed in (3.5).

[force in longitudinal direction]
force in transverse direction
_ force in verticle direction (3.5)

moment inrolling '
moment in pitching

moment in yawing

= X = N <X

In Figure 3.4 shown the force and moment axes on the aircraft.

Figure 3.4. The moments and forces vectors
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3.1.4. Vector of actuator control input to aircraft

In this section, the vector expression of the actuators given in (3.6) that could

control on the aircraft is explained.

[or] [ thrust ]

[8a] | aileron |

[ 65| =l elevator (3.6)
|5F| ll flap Jl

l(SRJ rudder

Rudder

Elevator ~

Figure 3.5. Conventional aircraft (McLean, 1990)

Ailerons __ Leading edge (LE) slats

\ Horizontal canard

All- fins
moving fi -~ /

—

Speed brake — ——— ([ [OO——

All-moving tail =
/-

Flaps Spoilers

|

Vertical canard '/_;______W

Figure 3.6. A proposed control configured vehicle (McLean, 1990)
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3.2. Rigid Body Equation of Motion

Assuming the aircraft is a rigid body moving through space, it can be thought of
as having six degrees of freedom in motion. By applying Newton's Second Law to
this rigid body, equations of motion can be established in terms of translation and
angular accelerations that occur as a result of some forces and moments applied

to the aircraft.

In this section, kinematic equations of translation and rotation motion are
obtained. Before obtaining the equations of translation and rotational motions,

the second law of Newton was mentioned in (3.7) and (3.8).

F =2 (mV) (3.7)

M == (o) (3.8)

where F is the force, mV is the linear momentum, m is the mass, V is the
translational velocity, M is the moment, Iw is the angular momentum, w is the
angular velocity, and I is the inertia matrix. In (3.7) and (3.8) are vector equations
describing translation and rotational motion. Each vector Equation expresses
three scalar equations for vector components. Thus, six scalar Equations are
formed for six degrees of freedom for aircraft motion. Below, the body axis
components of the force, velocity, moment and angular velocity expressions in
(3.7) and (3.8) are specified in F=[FK FE KT, Vv=[u v w|T, M=
My My, M )", w=[p q 1]".

Therefore, the angular momentum expression is specified in (3.9) to be used in
finding moment Equations.

Lex _Ixy L, 14 Lip — L7
lo=|=Lx Iy I, [‘Il - lw = Iyq (3.9)
_Ixz Iyz Izz r —lyzp + Izr

The inertia matrix / symmetric matrix showed in (3.9) and where I, = I, =

I

yz = Iz = 0. So inertia matrix becomes like in Equation (3.10) as below.

zy —

12



Ixx 0 —Ixz

- [ 0y o ] (3.10)
—Ixz 0 Izz

For rotating axis system such as body axes, the derivative operator applied to

vectors describes the rate of change of vector components expressed in the

rotating system and the axis system rotation. This expression is explained in

Equation (3.11).
2= +wx() (3.11)

In Equations (3.12) and (3.13) are formed by combining Equations (3.7) and

(3.8). These equations are vector forms of the equations of motion expressed on

the body axis.
F=mV+wxmV (3.12)
M=Io0+wXIw (3.13)

The components of the force and moment equations in Equations (3.14) and
(3.15) are found when the body axis components of Equation (3.9) and the body
axis components are put into Equation (3.12) and (3.13) within the framework of

the expressions in Equation (3.2-1) and (3.2-2) explanined above.

Force Equations:

E, =m(u+ qw —rv)
E, =m(@ +ru—pw) (3.14)
E; =m@W +pv - qu)

Moment Equations:

My =pl, — 7l + qr(lz - Iy) — qply,

My = ql, + pr(l; — 1) + (0* =12y, (3.15)

13



M, =71, + DL, + pq(ly — 1) + qriy,

In Figure 3.8 shows aerodynamic forces and moments on the aircraft.

e

PSTV S

b

Figure 3.7. Definition of aerodynamic forces and moments

For aircrafts, the forces and moments applied to the left sides of the above
equations are caused by aerodynamics, gravity and thrust. Since gravity moves
approximately and the gravitational field is assumed to be uniform, there is no
gravitational moment acting on the aircraft. Because of this reason, Equations

(3.12) and (3.13) are expressed in equations (3.16) and (3.17) as follows.

Fy+Fr+F,=mV+wxmV (3.16)
My+Mp =10+ wxIlw (3.17)

The aerodynamic forces and moments affecting the airaircraft result from the
relative motion of the air and the aircrafts. Components of aerodynamic forces
and moments can be expressed in terms of dimensionless coefficients as in

equations (3.18) and (3.19).

Cx
C

Z

14



bC,
M, =3gs [ch] (3.19)
bC,

where g = 0.5pV? is the dynamic pressure, V is the airspeed (air relative
volocity), p is the air density, S is the wing area, b is the wing span, and c is the

mean aerodynamic chord length of the wing.

In general, the dimensionless aerodynamic force and moment coefficients are
nonlinearly dependent on aircrafts translation and angular velocity vector
components and control surface deviations and their time derivatives and/or

other dimensionless quantities such as the Mach number and Reynolds number.

Aircrafts weight is considered constant in both magnitude and direction relative
to earth axes, with 0;, moving along the earth axis. The components of the
aircraft weight along the fuselage axes change with the orientation of the aircraft
to the earth axis. The components of the aircraft weight along the fuselage axes
change with the orientation of the aircraft to the earth axis. The gravitational
components in the body axes are therefore dependent on the aircraft orientation
with respect to the earth axis and can be defined based on the orientation of the
body axes relative to the vehicle-carried earth axes. The most common way to
explain aircraft orientation with respect to vehicle-carried body axes is to use

Euler angles.

As shown in Figure 3.8, it is stated how the direction of a right-handed coordinate
system can be defined relative to the other. The sequence of rotating the axis of
Earth carried by the vehicle so that it is aligned with the body axis is completed

by a yaw angle rotation i) about the axis 0y, , followed by an angle of inclination

rotation 6, around the axis y, a roll angle rotation ¢ around the body axis O,.

15



Figure 3.8. Rotation earth axes to body axes (Klein and Morielli, 2006)

The components of the gravity vector in body axes are found through the product
of rotation matrices. As stated below, the components of the gravity vector in

Equation (3.20) are obtained as a result of matrix multiplications.

9x 1 0 0 1 [cos® 0O —sinf][cosyp siny 0][0 —gsinf
Fg = gyl = [0 cos$ Sin¢] [ 0 1 0 ”—sim[} cosyp O[O0 = [gcosesinqbl
9zlp 11 —sing cospl Lsin6 0 cos6 0 o 1llgl, Lgcosbcosp
Additionally,
Ix —mgsinf
Fe=m|9y| = mgcosesinqb] (3.20)
9z1p mgcosBcosg

Assuming that the thrust from the propulsion system moves along the x-body
axis, the thrust appears only as a force exerted along the x-body axis and is

expressed as in Equation (3.21).

FT=

T
()‘ (3.21)
0

Sometimes it may be necessary to take into account the effect of rotating mass in
the propulsion system, such as the propellers or rotors of jet engines. Gyroscopic

terms associated with rotating mass are considered as applied moment because

16



the equations of motion were formulated assuming that the aircraft is a rigid body

with no moving parts.

The angular momentum of the rotating mass in the body axes is expressed as in

Equation (3.22) as follows.

(3.22)

Where I, is the inertia of the rotating mass and (2, is the angular velocity. Thus

My is expressed as in Equation (3.23) as follows.

0 —r q[p 0
d
My =—(hp) = w X h, = [ r 0 —pl| o |=]| T (3.23)
‘ -q p 0ll o ~I,2q

As aresult, by using the expressions above, the force and moment equations are

obtained as in Equations (3.24) and (3.25) as follows.

Force Equations:

mu = m(rv — qw) + gSC, — mgsind + T
mv = m(pw — ru) + qSC,, + mgcosfsing (3.24)

mw = m(qu — pv) + qSC, + mgcosOcos¢p
Moment Equations:

pl, — 71, = qShC; — qr(lz - Iy) + qply,
qly = qScCp — prly — I) — (p* = 1*) Ly + [, (3.25)

1, — ply, = GSbCy, — pq(l, — I,) — qrly, — I,0q

17



3.3. Rotational Kinematic Equation

Rotational kinematic equations are expressed in terms of the rate of change of
Euler angles and the body axis components of angular velocity. Below is given in

Equation (3.26).

P71 [1 0 —sin® P
[ql= [0 cos® sindcosH 0 (3.26)
rd 10 —sin® cosdPcosbl |y

By inverting the expression in Equation (3.26), the Euler angles in Equation
(3.27) are found.

& = p + tanf(qsin® + rcosd)

6 = qcos® — rsind (3.27)

_ qsin® +rcos®

cosf

3.4. Navigation Equation

By expressing the aircraft velocity vector in the earth axes starting from the body
axis components, the navigation equations are written as in Equation (3.28) as
follows. The components are explained separately as in Equation (3.29), (3.30)

and (3.31).

cos@ 0 —sinO][ cosy siny O
0 1 0 ”—sim/) cosy O“l (3.28)

sin@ 0 cosO 0

Xg 1 0 0
Y|l =10 cos® sin®
Zg 0 —sin® cosd

Therefore,

Xg = ucosypcosd + v(cosysinfsin® — sinycos®) + w(cosypsinBcos® + sinysind) (3.29)

18



Xg = usinycosO + v(sinysinBsin® + cosypcos®) + w(sinysinBcos® — cosysind) (3.30)

h = usin® — vccosfsin® — wcosBcos® (3.31)

where

h = altitude = —zg

3.5. Force Equations in Wind Axes

The total velocity of the aircraft (V) was found in the previous sections is in the
direction of the wind axis. To find the relationship between the fuselage axis and
the wind axis, rotate the fuselage pivot system around the z-axis by a negative
side slip angle unit (f); The resulting new coordinate system is then rotated by a
positive angle of attack (a) around the new y-axis. In Figure 3.7, the rotation

angles on the aircraft are specified.

Figure 3.9. Definition of aerodynamic angles (Klein and Morielli, 2006)

The rotation matrix was specified in (3.32) to express the velocity vectors of the

aircraft to the specified angle of attack (a) and side slip angles ().

' cosf cosa  sinff  cosfsina
Rpsad = [—sinfcosa  cosp —sinBsina (3.32)
—sina 0 cosa

19



Thus, velocity of the aircraft in body axis system is defined in (3.33) and (3.34).

ybody — R\g/oigllgTVwind (3.33)

vl=| vsing) (3.34)

u Vcos(B)cos(a)
[wl Vsin(B)sin(a)

If the values of @ and £ are small enough such that cosa = 1 and sinf§ = (3, the

expression in (3.35) is obtained from Equation (3.34).

u=Vv

a= tan_lg (3.35)
— -17

B = sin ”

V is the airspeed and it is expressed in Equation (3.36).

V =vu? +v?+w? (3.36)

So, differentiating Eqaution (3.35) and (3.36) with respect to time gives in
Equation (3.37) - (3.39).

V =2 (uit + vv + wiv) (3.37)

G = Lowu (3.38)

uz+w?

Vo — vV l

|
1 B [
1 (¥ 2 Vvu? + w?
J1-(7)
(v +w?)v-v(uu+vv+ww)
- v2VuZ+w?

_ (WP+w?)v-v(uut+wi)
o V2VuZ+w?

o
. Vvo—vV
- l

(3.39)
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3.6. The Linarized Equations of Motion

The aircraft motion equations were derived above to be used in future studies.
These equations need to be linearized so that they can be analyzed and examined
comfortably in the sections to be explained later. For this reason, in this section,
the equations of motion resulting from both the longitudinal and lateral sides of
the aircraft are linearized since they are rather nonlinear. Highly nonlinear
equations are linearized in order to easily analyze the mathematical explanations
resulting from aircraft motion equations and behaviors (Howe, 1980). The
purpose of linearization is that the least squares method, which will be explained
later, can be applied easily on the equations formed as a result of the behavior of

the aircraft control surfaces. Here, linearized equations have been derived.

3.6.1. The linarized longitudinal equations

First of all, the states used in longitudinal motion equations are determined in
order to perform linearization. States of the longitudinal motions that are aircraft
velocity (v,), angular velocity pitch component (q), pitch angle (8) and angle of
attack (a). The equilibrium points of states are v, = vjg, @« = @y = 0,0 = 6, =0
and q = 0. After determining the states and equilibrium points for longitudinal
motion, linearization of the longitudinal motion equations between Equation

(3.40) and (3.43) is given below.

) —29(Cpy+Cp ZCLOZ) c, p
— CL _ 20 = —
V, = ™~ V,+g (1 2Cp, .2 Cu, + m) a—gb (3.40)
. - C P, c P, CL
a=—’;(1+ﬂ+—)1/p—(iﬂ+—)0f—i 5, +q (3.41)
Vp() CL mg Vpo CL mVpo VPO CL
. 2 c C 2c & mgczC mgcCy
g = mgcCy, D+ mgcly, mgc=Cy, Mo q Se 6e (342)
LyVp,CL LyyCy, 21y, Vp CL, 21y, Vp CL 1y, Cy,
6 =gq (3.43)
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Equations between (3.40) - (3.43) can be stated as form of vector notation in
Equation (3.44) as follows. Representation of A, B and C matrices in vector

notation is given in equation (3.45).

1 0 0 0 vp a1 Qaqp 0 -9 Up 0
7 O 1 O O a _ a21 a22 1 O a bz
CX =AX + B6, - 0 e, 1 0||a| e an am o||a + b, Se (3.44)
0 0 o0 11L6 0 0 1 0 0 0
where
1 0 0 O a11 a12 O _g 0
0 1 0 0 a a 1 0 b
C= , A= | %2 , B=|7 3.45
0 C32 1 O asq as, ass3 0 b3 ( )
0O 0 0 1 0 0 1 0 0

C is invertible matrix. Therefore, it can be move to do right hand side of the

Equation (3.44). Therefore, The A and B matrices are updated in Equation (3.46).

a; az 0 —g 9

A=ca=|%1 %2 1 0| p_rap_|b (3.46)
d3; Q3 A3z O b3
0 0 1 0 0

Component of the A and B matrix detailed expressions can be obtained from the
coefficient linearized longitudinal motion equations for v, ¢, g, 6 in Equation
(3.40) - (3.43). Thus, the coefficients in the given matrix in Equation (3.46) are
expressed in Equation (3.47) below with some assumptions. Some assumptions
were made while generating the coefficients in Equation (3.47) (Howe, 1991).

These assumptions are set out below.

- P, is neglected, the z component of powerplant force

- CLO =(

- CMO =0

_ Py _ gCp
m Cr
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The coefficients according to these assumptions are as follows.

mchCMd

€32 = 5 V¢

yyVp, CL
_ 29gCp
Q11 = = ¢
Po-L

A2 = 9 (1 - 2CDCL2 CLa)

14 = —9
a1 = -
Vo
_ g CLa: Cp
Az = —_(_ -
Voo CL Cy
a3 =1
as;; =0

__mgcCpy,
A3z =~ C
yyCL
mgc?Cy
_ Q
33 =5 v ¢
yyVpolL
a43 - 1
_ g CLSe
b= =0
po =t (3.47)
mgcCM5
b3 =—¢
IyyCL
Q31 = —C32031 + A3q
A3y = —C32Q7; T az;
Q33 = —C33 + a3z
b3 = _C32b2 + b3

After the matrix coefficients defined above, the state equations can be rewritten

as in Equation (3.48) - (3.51) below.

I/.p = allvp + a,a + A4 6
a = a21vp + ar,a + q + b26e
q = agza + d33q + 5366 + d31vp

0 =q

(3.48)
(3.49)
(3.50)
(3.51)

In addition, the states of (3.48) - (3.51) are expressed in the Laplace domain by

performing the Laplace transform.

In this way, the linearized longitudinal equations of motion of an airplane

together with laplace transforms will obtain the transfer function resulting from

the behavior of the elevator control surface. Thus, the pitch transfer function

which is the elevator displacement ratio of the pitch angle is expressed in

Equations (3.52) and (3.53) below.
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(b3 — €350,)8% + [b; (311 + A35) — b3(a41 + @z)1s + b3(a11a5; — G21a15) — bra3201,

() =
3 DG
: (3.52)
where
D(s) = s* + (C32 — Ay1 — Gpp — A33)$> + [A11G5; — Ap1G15 + A33(Ay1 + A2) 32011 — A3,]57
+ [€32a21 Q14 + A32011 — Q33(A11 027 — Q21015)]S + A32051 014
(3.53)

In general, the pitch transfer function has been created. This function can also be

expressed in the form in Equation (3.54) (Howe, 1980).

6 (Tss + )(1ps + 1)

_(S) =K,

O, 1 20, 1, 23, (3.54)
(Wnsz sS4+ Wnpz s+ 1)(Wnp2 sS4+ Wnpz s+1)

Longitudional motion of the aircraft with the short-period and phugoid
approximations may be expressed as the transfer function form in Equation
(3.54). Input of this transfer is elevator displacement while ouput is pitch angle.
The transfer function we find contains two complex conjugate root pair and
damped oscillatory transients. According to the short period approach of the first
root aircraft, undamped natural frequency w,,, damping ratio {;, t; and
according to the second root phugoid approach, natural frequency wy,,, damping
ratio {;,, 7, and the gain of our system are revealed. These expressions are
explained in (3.55). The definition of the symbols used for this form of this

transfer function explained in Equation (3.54) is given in Equation (3.55).

(3.55)
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N mgc (_CMa) gCCMQ(CLa + CD)
ns — - 2,72
Iyy C, 2V,0°CL

7, = g <CLa+CD chCMQCM{l>
.= _
2WnsVpo \ €, 21,,C,
2
I = c ( CmaCrs,9¢ — 2V Cys,CL )
=
2Vpo CmaCrs,9¢ — (CLaCD)CM6egC
Cp(Cpe + Cp) Cys. Cus.C
Ke= |- |22 4 1-2C) ,Cp | + —2
CL L Cya  CL

After obtaining the pitch transfer function from the longitudinal motion
equations, another transfer function derived from the longitudinal motion
equations is the ratio of the angle of attack to the elevator displacement. With this
transfer function, analysis of the behavior of an aircraft between the angle of
attack and the elevator displacement can be realized. While finding this transfer
function, the Equations between (3.47) - (3.51) described above are used. The
necessary equations are made between the Equations (3.48) - (3.51) to obtain the
transfer operator relating angle of attack to elevator displacement in the

following Equation (3.56).

2 (s) = 3+ [b3 — by(a1; + az3)]s? + agq(byaszs — bz)s + bzaz aq,
0 D(s
e

(3.56)

where D(s) as before is given by Equation (3.53). This transfer operator relating
angle of attack to elevator displacement, extracted with the pitch transfer
foundation, will be used in the description of the prediction methods described

later.
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3.6.2. The linarized lateral equations

After linearizing the longitudinal motion equations, the lateral motion equations
will be linearized in this section for the analysis of the behaviors resulting from
the aircraft's lateral motion. Before starting linearization, states should be
determined as with longitudinal motion. States of the lateral motions that are side
slip angle (f), roll rate (p), yaw rate (r) and bank angle (®). The equilibrium
points of states determined in lateral motion are f = 0,p = 0,r =0and @ = 0.
Thus, the linearized lateral motion Equations for 8, p, #, @ are expressed in

Equation (3.57)- (3.60).

. gCy gCy
B g Sr
= —r(Z)e+ 5 3.57
b=y F v iy (3.57)
. mgbClB g+ mgszlp N mgb*Cy, .t Ix_zr, + mgbCis, P mgbCys, s (3-58)
P= IxxCL 2Ixxvz)OCL P 21xpr0CL xx IxxCL “ IxxCL "
. mgbCNb, N mgbZCNp N mgszNR +1xz - mgbCNsa P mgbCNJT 5 (3.59)
T IZZCL ﬁ leszOCL leszoCL " Izz IZZCL “ IZZCL ’
b =p (3.60)

The state equations that occur in the lateral motion of the aircraft have been
expressed. These equations can also be expressed in vector representation. The
vector representation is given below in Equation (3.61). Representation of 4 and

B matrices in vector notation is given in equation (3.62).

1 0 0 0]]8] a;; 0 =1 ayu][B 0 by
; 0 1 ¢ 0 a a a 0 b b
CX = AX + BS 23 P|_ |G a2z dz3 p 21 D22 [ 3.61
TPy e, 1 o7 T e as am 0|7 b31 b32 8y (3.61)
0 0 o 1lle 0o 1 o0 olle

where
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1 0 0 O a;;r 0 =1 ayq 0 by
0 1 c 0 a a a 0 b b

C = 23 CA=|%21 G2 23 B =|P21 D2z 3.62
0 32 1 0 az; Az azz 0 b3y b3y ( )
0 0 0 1 0 1 0 0 0 0

C is invertible matrix. Therefore, it can be move to do right hand side of the

Equation (3.61). Therefore, The A and B matrices are updated in Equation (3.63).

aiq 0 -1 Q14 [ 0 blZ]

A=C"14 = a21 aZZ aZ3 0 B=C"1B = ba1 by (363)
dz; Q3 dzz O |B31 b3, l
0 1 0 0 Lo ol

Component of the A and B matrix detailed expressions can be obtained from the
coefficient linearized lateral motion equations for 8, p, ¥, @ in Equation (3.57) -
(3.60). Thus, the coefficients of A and B matrices in Equation (3.63) are

expressed in Equation (3.64) below.

IXZ

C23 =~
xx

IXZ

C —_ — 2L
32 I,z
.QCYB

Q11 =5
Po L

mgb“Cnp
Aay =
32 2l,VpoCl,
mgb®Cp
Aan =
33 21,3V, C1,
~ C32 1
a = - a
317 (331 21 pp05,-1 31
A C3p 1
a = - a
33 C23C32—1 C33C32=1 33
N C23
by, = — by, +
22 C23C32=1" 22 Cp305-1

b32

biz = G720

VpoCL
b = mgbCis,,
21 — 1.C
xx“L
b mgbClsr
22— LyxCL
mgbCNsa
b31 - 1..C
zz“L
b mgbCNST
32— Iz2CL
A 1 C23
a = — a
21 331 21 T cpueg-1 51
A~ C23
a = — a + a
22 C23C32—1 22 C23C32—1 32
A 1 Ca23
a = — Ay + a
23 C23C32—1 23 C23C32—1 33
~ C32 1
a = a
32 C23C32—1 22 C23C32—1 32
~ 1 C3
by,y = — by, + b
21 C23C32—1 21 C23C32—1 31
~ Caz 1
by, = 3 b
317 (h3e3-17 21 cp305,-1 31
C32 1
bs, = - b
32 C23C32=1" 22 Cp305,-1 32
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After the matrix coefficients defined above, the state equations can be rewritten

as in Equation (3.65) - (3.68) below.

B =ai1f—1+a, @+ b0, (3.65)
P = 1 + Gppp + Qpa7 + bp18, + byy6, (3.66)
7 = @318 + G3op + +A337 + D318, + b3,6, (3.67)
b =p (3.68)

Thus, the states of (3.65) - (3.68) are expressed in the Laplace domain by

performing the Laplace transform.

Then, Equation (3.69) and Equation (3.70) expressions can be obtained when the
Equations in (3.65) - (3.68) are adjusted within themselves in order to derive the

desired transfer functions.

[s? = (@11 + az3)s + (az1 + azzag)]r
= [—c325% + (azz + €32011)5% — A320115 + A31a14]P + (b315 — b31a11)8, (3.69)

+(b32s + azibiz — b3pa11)6;

[(‘131 - ‘121‘332)52 + (a21a32 - a31a32)s]d)
= [(az1 — a31C23)S + A31023 — Ap1A33 |1 + (a31bp1 — Az1b31)8, + (az1by2 (3.70)

—0a31b32)6,

After reaching these expressions, in order to simplify the expressions in Equation
(3.69) and (3.70), the coefficients in the expressions are expressed in Equation

(3.71) in the following format.

a; = —(ay; + assz) bs = bs;

Qg = az1 + azzaq1 b, = az1b1; — bszaq4
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C3 = —C32 d, = az; — az C3;

C; = a3z + €320 dq = az1a3; — a310y, (3.71)
€1 = —0azz011 ky = az; — az 23

Co = A31014 ko = az;1a;3 — az1as3;3

by = b3, by = az1byy — az1b3,

by = —b31a4 by = az1byy — az1b3,

Thus, in order to make examinations in the lateral motion, the ratio of the bank
angle found in Equation (3.72) and (3.73) below to both aileron displacement and

rudder displacement is determined as a result of the equations above.

(b4 + b1k1)52 + [b4a1 + bokl]s + (b4a0 + boko)
P(s) = 6,

D, (s) a
(bs + b3ki)sz + [bsay + byky + bskgls + (bsag + bykg) (372)
+ 5
D;(s)
where
Dl(s) = (dz - C3k1)54 + (d2a1 +d—c kg — C3k0)53 (373)

+ [aodz + a1d1 - C1k1 - Czko]sz + [aodl - Clko - Cokl]s + Coko

Thus, the transfer function, which generally results from the lateral motion of an
aircraft, has been found. The analysis of the behavior of this transfer function
bank angle is based on the changes of both aileron and rudder dispcement. also,
this transfer function can be expressed in a separate form. In other words, the
ratio of the bank angle to the aileron displacement and the ratio of the bank angle
to the rudder displacement are explained separately below (Howe, 1980). First,

the ratio of bank angle to aileron displacement in Equation (3.74) is given below.

2
_5° eS|y

P
5 = Ka up Tod (3.74)
a

2
(Tp1S + 1) (Tpzs + 1)(——s + 26rS 1 1y
Whr Whnr

Lateral motion of the aircraft with the dutch-roll and spiral mode approximations may

be expressed as the transfer function form in Equation (3.6.2-21). Input of this transfer
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is aileron displacement while ouput is bank angle. As was done when expressing the
pitch transfer function before, this equation was obtained in its plain form with
some approximations. The dutch roll and spiral mode approaches we used in the
lateral motion of the aircraft were used to obtain this equation. The time
constants Ty, and Ty, are for the rolling motion, w,,, and w,, are the natural
frequency, {, and ¢, are the damping ratio, and the gain value is the gain of our
system. These expressions are explained in (3.75). The definition of the symbols
used for this form of this transfer function explained in Equation (3.74) is given

in Equation (3.75).

2L VoG,

Tpi =
*1 7 mgb2Cp

_— @(CZPCNB - CNPCl/a)
?27 g \CirCnp — CnrCip

mgbCyp
Wor = 1zzC,
(=Y mgb*Cur Crp (3.75)
r mgbCNﬁVpo ZIZZCL CL

IZZCL

a

_ (mgszNBmngaa mgbZCleQCN6a> (mgbCN;; mgszNRgCy;;>

IzzCLIxxCL B IzzCLIxxCL IzzCL IzzCLZVpOCLVpO

mgbCys,gVpoCyp (mgbCNﬁmgszm B mgbClﬁmgszNR>
12zCLVpoCL 122C1L 2L Vo G, Lex CL2177VipoCl

1 1
Wne = — |K,
ne ¢ mgb*CygmgCis, mgb?CiymgCys,  mgbCys, (mgbClB + mgbCN,;u,xz)]
IzzCLIxxCL IzzClexcL IzzCL IxxCL IzzClex
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1 mgb*CygmgCys, mgb*CymgCys,
(o = —Wno o [— -

K" LGt L0,
mgbCys, <gCYB mgbZCNR>
I;C, \VpoCr  215,VpoCy
_ mgbCys,9VpoCyp (mgbClﬁ mgbCN5a1xz>
1,;CLVp0Cy, I Cy, 1zzCp 1,

mgbCig (mgbCNﬁmgsz,R mgbClegszNR>
IxxCL IZZCLZIxprOCL IxxCLZIszpOCL

After explaining the ratio of bank angle to aileron displacement as above, this
time again in bear form, the ratio of bank angle to rudder displacement is

explained below in Equation (3.76).

2 _ K (Tq)rls + 1)(_Tq)rzs + 1)
- 2 3.76
O Tars + D (Taps + g+ 25 11y (3.76)
Whyr Wnr

While analyzing the aileron control surface behavior, the states in the lateral motion
of the aircraft and the equations resulting from the linearization were extracted. Here
again, we will reach the transfer function, which is the ratio of bank angle to rudder
displacement in (3.6.2-19), using those equations. As we have done before when
expressing the pitch transfer function and the transfer function of the ratio of the
bank angle to aileron displacement, this equation is also simply obtained by some
approximation. In order to obtain this equation, the dutch roll and spiral mode
approaches that we use in the lateral motion of the aircraft are used. Ty, Tpy, Wi
and {, values expressed above have the same value here as they were the

behavior of the bank angle before. In addition, Ty, and Ty, time constants and
the gain of our system are defined here. These expressions are explained in (3.75)

and (3.77). Parameter of the Equation (3.76) is presented in Equation (3.77).

_ mgbCNB mgbZCNR gCyB

mgbCyg mgbCis,  mgbCz mgbCys, < )
" IzzCL CLIxx IxxCL CLIzz IzzCL 2IzzCLVpO CLVpO

mgbCyz mgb?Cip B mgbCs mgb*Cygr. mgbCyp gCys, B mgbCys, gCyp (3.77)
IZZCL lexCLVpO CLIxx CL [ZZCL CLVpO CLIZZ CLVpO

+(
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o mgbCypg mgbCys, 3 mgbCg mgbCys, mgbCys. mgbCp
on IzzCL CLIxx IxxCL CLIZZ CLIZZ CLIxx
mgbCyp,, . 1

)=
IzzCLIxx D

_ mgbCyp mgbCis,  mgbCs mgbCys, (_ <gCy3 mgbZCNR)>

IZZCL CLIxx IxxCL CLIZZ CLVpO ZIZZCLVpo

mgbCg mgbCyp,,,\ (MmgbCunp gCys, mgbCys, gCyp
(clex LGl )< L,C, CVp Gy CLVpo>
mgbCys, mgbCys mgb*Cz  mgbCe mgb?Cyp
L,C, L0 2LnCVpo Gl G

)] + K

Thus, the transfer functions resulting from both the longitudinal and lateral
motions of an aircraft are expressed. These transfer functions will be analyzed
using system identification methods in the following sections and it will be
examined whether the same result is given with the original data. Therefore, in
this section, the mathematical model of the airaircraft has been derived and the
transfer functions to be analyzed are created by linearizing the nonlinear

equations.
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4. SYSTEM IDENTIFICATION OF AN AIRCRAFT

In this section, what the system definition is, its history, the description of the
system definition tool in the MATLAB program and how the system identification
is used on the aircraft are explained. By explaining the parameter estimation
methods, the equations resulting from the behavior of aircraft control surfaces
with online and offline parameter estimation methods are estimated. In this
chapter, the system identification procedure for the aircrafts was explained
based on the book “Aircraft System Identification: Theory and Practise” by Klein
and Morelli (Klein and Morelli, 2006).

4.1. Definition of System Identification

System identification creates mathematical models of any dynamical system
based on the behavior of input and output signals. The estimated models are then
utilized to examine the behavior of the dynamic system. System identification
tries to develop a significant mathematical model that relates the inputs of the
system with the outputs using the experimental data measured from the system.
As observed in Figure 4.1 and Figure 4.2, the inputs and outputs of the system are
generally known as the system definition process and the model of the dynamic
system emerges. In other words, when the input values that will enter our system
and the behavior of our system as output are known, our system can be defined
and the state equation of our system is found. The dynamical system represented
via state space approach may be seen in Figure 4.1 A dynamic system is a

mathematical relationship between the input and output variables of the system.
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Figure 4.1. Representation of dynamic system
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Figure 4.2. System identification of aircraft system

Three different types of problems are encountered in system theory, with the
other two being any of the input, output and model functions described above.
The three problems that arise according to the state of these parameters are the

simulation, control and definition of the dynamic system. These three problems

are below.

1) Simulation problem by giving the input u and system functions fand g and

finding the outputy.

2) The control problem is to give output y and system functions fand g and

find the input u.
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3) The identification problem is to find the system functions fand g by giving

the input u and the output z

System identification is concerned with the determination of the mathematical
model structure that corresponds to the generally unknown dynamic system. For
a given model, the parameters within the model are quantified by applying a
numerical, usually statistical procedure. Basically, this part of the model building
process is called “parameter estimation” as seen in the Figure 4.3. In order to
evaluate the model suitability, the "model validation" step comes after the
parameter estimation stage. If it turns out that the defined model does not meet
the requirements, the model structure must be changed again and the process
must be repeated from the beginning. Therefore, system identification is

generally an iterative process that is significantly required.

Simulation
Model structure
and parameters

known & prion

Concemad with the
computation of
system responses

Numerical integration

Model structure
and parameaters
unknown

Model
structure
fixed

Parameter sstimation System identification

Concerned with the
quantification of
parameter values

Concemed with the
model structure
determination and
estimation of
parameaters

o ———————

Statistical estimation
of parameters

Figure 4.3. Definition of system identification (Jategaonkar, 2006)

In Figure 4.4, showed the system identification prodecure stage. The system
identification process starts by making experiments to collect data on the system
while determining the measurements of system inputs and outputs. After data is
collected, general equations that describe a model or system are developed. Then

the unknown parameters in the created model limits are tried to be determined.

35



Knowledge and
experience about
the system

i —

-I Experiment Design and Data
Acquisition

Data Processing

Model Structure
Selection

Incorrect structure

Incorrect parameter
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Accepted
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Figure 4.4. System identification procedure

4.2. History of System Identification

The term system identification was coined by Lotfi Zadeh in 1962. Zadeh
introduced the term system identification as “the determination on the basis of
input and output, of a system within a specified class of systems, to which the
system under test is equivalent” (Zadeh, 1962). The earliest studies in system
identification were created by statistics and time series communities. System
description has its roots in the studies, “Theory of the Motion of Heavenly Bodies
Moving about the Sun in Conic Sections” the theory stationary stochastic
processes was developed during the period 1920 to 1970 (Gauss, 1809). In the
1960s, the model-based control era and the work of expressing the systems as
state space functions began. At that time, various techniques were used to
express physical systems in this way. The need for system definition has arisen
due to the increasing pressure to apply these modern techniques to areas where

models are not available in physics.
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Then, system identification is defined as the task of creating a dynamic model in
state space and input/output types that can predict the output signals of a

dynamic system.

The studies “Effective construction of linear state variable models from input-
output functions” (Ho and Kalman, 1965) and “Numerical identification of linear
dynamic systems from normal operating records” (Astrom and Bohlin, 1965)
may be stated as one of the fundamental researches related to system

identification.

4.3. System Identification Toolbox

In this section, the tool of MATLAB program is used as a system identification
tool. The system identification toolbox enables mathematical models of dynamic
systems to be created from measured input-output data. Thanks to the tool, we
obtain dynamic systems that can be modeled simply. Also we can use time-
domain and frequency-domain input-output data to define continuous-time and

discrete-time transfer functions, process models, and state-space models.

Using the MATLAB program system definition tool, examples are made on some
systems and the use of the tool is shown. The screen demonstrated in Figure 4.5
appears when the program's tool is opened for the first time. Using the system

identification tool, we will be able to accomplish below tasks.

e Import data from the MATLAB workspace into the system identification
toolbox.

e Plot the data.

e Process data by removal offsets from the input and output signals.

e Estimate, validate, and compare linear models.

e Export models to the MATLAB workspace.
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—n System Identification Tool - Untitled - O X

File Options Window Help

Import data e Import medels v
J, Operations. ‘l'
<— Preprocess ~
=

Working Data

Estimate —= w
Data Views Model Views
To To
Time piot Workspace || LTI Viewer Model output Transient resp Nonlinear ARX
Data spectra Model resids Frequency resp Hamm-VWiener

Zeros and poles

Frequency function ”

Noise spectrum
RS Validation Data

Status line is here.

Figure 4.5. System identification tool screen

In order to better comprehend the tool in the MATLAB program and to use its
functions, a sample system has been determined, and the program visuals and
how it works are given on it. An example transfer function determined is given in
Equation (4.1). In this transfer function, y is output and u is input. Also the

transfer function is expressed in the laplace domain and s is the laplace variable.

y_ 100 (4.1)
u  s2425s+100

In order to express the output in the specified butransfer function, an input must
be defined. As seen in Equation (4.2), the unit step function is defined as input to

the system.
u=1 (4.2)

After the input is determined, the transfer function, which is its counterpart in

the laplace dominant, is expressed in Equation (4.3) below.
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1 100 (4.3)
" ss24 255+ 100

y

Thus, the output of the determined system is indicated in the time domain in

Equation (4.4) as follows.

y(t) = 6.66(e™5 —e7208) + 1 (4.4)

Thus, using the system identification tool, we have obtained the input and output
values that we will define to the tool to find the transfer function that I have
determined as an example. In matlab script part, we can define ouput function,
input value and time interval. After opening the system identification tool, we
first call the data according to the type of data from the ‘import data’ section as

shown in Figure 4.6.

System |dentification Tool - Untitled — O X
File  Options Window Help
Impert data i Impert models ~
Operations ;
Time domain data...
Freq. domain data... “— Preprocess ~
Data object... 1.
Example...
I -
Working Data
Estimate —= e
Data Views Model Views
To To
Time plot Workspace | | LTI Viewer Model output Transient resp Nonlinear ARX
Data spectra Model resids Frequency resp Hamm-¥iener
Freguency function ” Zeros and poles
MNoise spectrum
Trash Validation Data
Status line is here.

Figure 4.6. System identification tool import data part

After importing the data, we enter the input output values defined in the MATLAB

workspace and the starting time and sampling interval while sampling from our
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output data on the screen in Figure 4.7. The sampling time is the time between
consecutive data samples in your experiment and must be the numerical time

interval at which your data is sampled in any units.

Impert 0.  — O Pt

Data Format for Signals

Time-Domain Signals e

Workspace Variable
Input: u

Cutput: v

Data Information
Data name: mydata
Starting time 0

Sampling interval: 0.0

More

Import Reset

Close Help

Figure 4.7. System identification tool data definiton

After clicking the import button, the defined input output values come to the data
screen in the Figure 4.8. More than one data can be imported from the data

screen. The data to be analyzed is dragged to the ‘working data’ section.
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System |dentification Tool - Untitled — O X
File Options  Window Help
Import models. b
Operations l'
{\ <— Preprocess w
mydata
Estimate — ~
Data Views Model Views
To To
[ Time plot Workspace | | LTI Viewer Model output Transient resp Monlinear AR
|:| Data spectra Model resids Frequency resp Hamm-Wiener
|:| Freguency function Zeres and poles
mydata .
Noise spectrum
==k Validation Data
Data set mydata inserted. Double click on icon (right mouse) for text information.

Figure 4.8. System identification tool data views

After dragging the data to the working area, the desired model type is selected
from the ‘estimate’ part shown in Figure 4.9. In the example above, since the
system is taken as a transfer function, the transfer function model has been

selected here.

Systern |dentification Tool - Untitled = O X
File Options Window Help
Import data ~ Import medels ~
l Operations ‘
{_\ =— Preprocess ~
mydata f
= data
Working Data
Estimate — ~
Data Views Model Views
Transfer Function Models.
|:|Time plot State Space Models... odel output Transient resp Nonlinear ARX
[ pata spectra Process Models... odel resids Freguency resp Hamm-Wiener
O — Palynominal Models... _ :
requency function Monlinear Models. .. £ET0S and poles
Spectral Models... .data Noize spectrum
Correlation Models... TTDEE
Quick Start o update necassary.

Figure 4.9. System identification tool estimate part

In Figure 4.10, the pole and zero numbers of our system are entered and the

‘estimate’ button is clicked.

41
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Model name: tf1 &

Number of poles: |2

Mumber of zeros: |0
(® Continuous-time () Discrete-time (Ts = 0,01) Feedthrough

¥ 170 Delay
F Estimation Options

Estimate Close Help

Figure 4.10. System identification tool transfer function definition

In Figure 4.11, The transfer function definition process screen appears and it is

seen how successfully the data are estimate.

#\ Estimation Progress Viewes - O x

Transfer Function [dentificesion

Estimation data: Tioe domaln dats mydata

Data has | cutpucs, 1 inputs and 01l samplen.
) r of poles Nunber of zerost

Initislization Method: iv*

Estimation Progress

] 4.07=404 22 ' e
a%0 €. Tl=s04 « 0.64
16¢ €.170404 -02
122 4.75e008 25. <
18.8 3. 68e+04 53
5.97 1. 87,8
1.74 a. 35.5%
1621 i
4. 1605 .- i
7.120-«12 5.85417 9.2
5.95e~13 7.58e¢ 82
1.12e-13 3.74e+ 76
7.47e-15 2.5%e+ Je+32 3.4%
SOVATiance, ..
~
Resuit
Termination condition: Mear (locel| minisma, (normig) tel).

Nusber of iverations: 15, Nusber of funcuice evaluaticns: 144

Status [atgzi::t:l using I¥EST with Focus « *
Fit to estimation data;

Figure 4.11. System identification tool estimation progress viewer
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In Figure 4.12, the model with estimate comes to the ‘model views’ section and

by right clicking, the transfer function, which is estimate, is found as seen in

Figure 4.13.

System ldentification Tool - Untitled — O *

File Options  Window  Help

Import data w Import models v
; Operations “

<— Preprocess w
mydata 1. tf1
- mydata

Working Data

Estimate —= i
Data Views To To Model Views
] Time plot Workspace (| LTIViewer | ] model output ] Transient resp Monlinear ARX
[] pata =pectra ] Model resids [] Freguency resp Hamm-Wiener
[] Freguency function ” [] Zeros and poles
mydata .
— [] Moize spectrum

Validation Data
Model tf1 inserted. Double click on icon for text information.

Figure 4.12. System identification tool model views part

Data/model Info: tf1 - O X
Model name: 1
Color: [0,0,1]
From input "ul"™ to output "yl": ™~
100

s~2 + 25 s + 100
MName: tf£l

Continucus—-time identified transfer func

{ >

Diary and Notes

]
% Import mydata
% Transfer function estimation
Options = tfestOptions; W

Present Close Help

Figure 4.13. Estimation transfer function
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4.3.1. Aircraft pitch transfer function estimation via toolbox

In the section above, based on the transfer function of a simple system, it was
explained how to obtain the transfer function of the system by using the system
identification tool after the input and output values determined. In this context,

the use of system identification tool was explained with this example.

In this section, the pitch transfer function as the behavior of the aircraft elevator
control surface was obtained using the system definition tool. The pitch transfer
function is as follows in Howe lecture notes (Howe, 1980). The transfer function

to be examined in (4.5) and the specified input expression in (4.6) are given.

0 —26(53.25% + 39.1s + 1) (4.5)

5, 55.8s*+ 11253 + 181552 + 48.2s + 1

u = 0.1sint (4.6)

In Figure 4.14 has defined the pole and zero numbers of our model.

4

Model name 112 7

Number of poler, &

Numiber of zerost 2

@ Conbruous-tme ) Discrete-time (T3 = 0.01)

» 1O Detay

P Estimation Options

Estimete Close Help

Figure 4.14. System identification tool transfer function definition

As seen in Figure 4.15, the success rate of the estimate result of the examined

pitch transfer function using the system definition tool is specfied.
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<\ Plant [dentification Progress — O X
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Figure 4.15. System identification tool estimation progress viewer

In Figure 4.16 has seen the behavior of our model after being estimate on the

‘model views’ screen.

& Syatem |dentfication - Unttled - o X

File Options Window Help

rport dats v mpont mudels

‘ Operstans ‘
|

| ||
N e T O O
I O [ |
It

SIS | S— | S—— ) E—

Deta Vews [ = f Modal Views
v l Ta
] Teve gt | Wertagmoe L bosatondt [[] veae sutput L Tranwent resg Tarmen
[ Datn specira ] Medet roses [Jtrequencyresp  nan -
] Fregsency fuscton III ~ ] Zervs ood poles
oy —X—\I' ‘m"_ [ Nose spectram
Vididation Duta

Figure 4.16. System identification tool model views part
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Finally, as can be seen in the Figure 4.17, the transfer function that our system

estimates with the system identification tool was found.

Model name "

Dvary and Nolas

Show In LTI Viewss

Present Espon Cose Mealp

Figure 4.17. System identification tool model views part

4.4. Parameter Estimation

The parameter estimation process is a type of system identification that deals
with estimating the values of parameters based on measured empirical data with
a random component. When estimating parameters, a basic physical setting is
described in such a way that their values affect the distribution of the measured
data. Parameter estimation is finding the values of unknown model parameters
in a default model structure. For parameter estimation, a model structure to be
estimated with unknown parameters (6), a mathematical model for the
measurement process, Observations or measurements (z), assumptions about
uncertainty in model parameters and measurement noise are required (v).

When y is output as follows Equatio (4.7) , the model is linear.

y =Ho (4.7)

where the matrix H is assumed to be known. Then the measurement equation can

be expressed as in Equation (4.8).
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z=HO+v (4.8)

Figure 4.18 shows how the parameter approach is in general. In this figure, data
collection, which is the mentality of the parameter estimation, is a system that
will be estimate and the process of the most estimation process and the

emergence of the model is shown.

» * o .
L ]
L ]
3% "
[ ]
L ]
L ]
: Experimental —
Experiment
k data s/
Parameter
Estimation Fitted

V [S] model
l/() — max
R

Mathematical model
Figure 4.18. Parameter estimation (Remli, et al. 2017)
Below, in the classification created in Figure 4.19, various parameter estimation
methods are shown. While this classification was made, more than one method

was classified as online and offline. Parameter estimation methods expressed in

this way will be explained as the subject progresses.
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Figure 4.19. Parameter Estimation Methods

4.4.1. Offline estimation

Collect all the input/output data and then estimate the model parameter. In other

words, data analysis or offline parameter estimation methods used after the

flight.

4.4.1.1.

Bayesian model

Bayesian model follows from the Bayesian estimation theory explained. A model

where you use the probability to represent all uncertainity in the model,

representing both the uncertainity about the output and the uncertainity about

the input in the model. @ is a vector of random variables with probability density

p(0).vis a random vector with probability density p(v). The bayesian model is

expressed in Equation (4.9).
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p(z|6)p(6) (4.9)

Pl == 75

4.4.1.2. Fisher model

Fisher Model is based on the estimation theory using the concept of a likelihood
function. 6 is a vector of unknown constant parameters. v is a random vector

with probability density p(v).

L(z 6) = p(z | 6)

Common estimator for the Fisher model is the maximum likelihood (ML)

estimator, which is equal to the value of u that maximizes L( z; u ) for given z.
4.4.1.2.1. Maximum likelihood method

Our aim in applying the Maximum Likelihood method is to estimate the
parameters of the stack to which the data we have belongs. Because it is generally
very difficult to know the real value of the parameter of the stack. Here, the
Maximum Likelihood Method is just one of many solutions that can be applied to
overcome this difficulty. This technique used for estimating the parameters of a
given distribution, using some observed data. Maximum Likelihood Method,
unlike Bayes model, sees parameters as a fixed point. In other words, the result

of the operation is a fixed number.

For example, let us have samples drawn from a certain stack in the form of Zy =
[2(1)2(2) ...z(N)]". The maximum likelihood method is expressed in Equation
(4.10).

L[Zy; 0] = L[z(1)z(2) ...2z(N); 6]
= L[z(N)|Zy-1;01L[Zy_1; 6]
(4.10)
= [TiL, L[z(D1Z;-4; 6]
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4.4.1.3. Least square method

Creating a curve or mathematical function that best fits a set of data points is
known as curve fitting. For a given data set, fitting curves of a particular type are
generally not unique. The best fit curve with minimum deviations from all data
points can be obtained by the least squares method (Molugaram and Rao, 2017).
The least squares method is a standard regression method used to write the
mathematical connection between two physical quantities that vary depending
on each other as an equation that is as realistic as possible. In other words, this
method serves to find a function curve that will pass "as close as possible" to the
data points obtained from the measurement result. As can be seen in Figure 4.20,
if it is desired to express the connection between two axes as a single linear
equation, a line must be found to pass as close to these points as possible. The
Least Squares Method consists of the coefficients in our linear equation that
minimize the sum of the squares of the distances between the points on the line

and the scattering points as a result of the approximation.

4 J—
Datapoints . .
3 Regression
2
1
. | | | |
0 | | | |
0.2 0.4 0.6 0.8 1

Figure 4.20 Least square estimation
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In order to explain the least squares method better in general, it is defined over
the sample data points. Assume that the data points are
(x1,¥1), (x2,¥2),--., (X, ¥yn) Wwhere x is the independent variable, y is the
dependent variable and n is the number of data points. As can be seen in Equation

(4.11) below, the error occurring in the result of the curve fitted at each data point

is shown.
er =y1 — f(x1),
e; =y, — f(x2),
(4.11)
en = Yn — f(xn)

According to the definitions above, this error should be minimum, ie it should be
"e;2 = Y1y; — f(x)]?. As can be seen in Figure 4.21, the representation of the
general definition is given. that is, values around a curve and estimated values

calculated by LS method are explained on the figure.

(X, )
(x;, ;) i Yo —f(x,)

yi -f(xi) —b{

W= /(\l)

v

Figure 4.21. Least square method
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The general definition of the least squares method has been briefly explained
above. Now, the algorithm logic will be expressed in detail and the sense of
finding the unknown parameters with which algorithm will be expressed. It will
be used to estimate the parameters, which are the coefficients of transfer
functions resulting from the behavior of aircraft control surfaces, which are the

general rationale of this thesis and will be explained later.

As mentioned, in order to use this method, a system must have an input and
output to this system. When performing a design, there is an input-output
relation to the plant of that system and an existing transfer function in the plant

as shown in Figure 4.22 (Chen and Tomizuka, 2014).

u(k)—~§-§j—_;%—~y(k+1>

Figure 4.22. Input-output relationship (Chen and Tomizuka, 2014)

The elements of the transfer function given in the plant given in Figure 4.29 are
expressed in Equation (4.12). From here, the input-output relationship will be

determined and the algorithm of the least square method will be given gradually.

B(Z_l) = bO + blz_l + -+ me_m
(4.12)
Az DY =1+az7 '+ +az "

After determining the elements of the mathematical function, the input and output
elements are determined. y(k + 1) is a linear combination of y(k),...,y(k +1 —

n) and u(k),...,u(k —m) and is expressed in Equation (4.13).

n

yk+1)=—-) ayltk+1—-i)+ ) bu(k—1i)
2 2

i=1

(4.13)
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After specifying the transfer function in Equation (4.13), the unknown parameter
and regressor vector are defined. Regression is a method for modeling the
relationship between a scalar response and one or more explanatory
variables. 8 = [ay, dy, ...ay, bg, by, ..., by ]T and the regressor vector ¢(k) =
[—y(k),...,—y(k + 1 —n),u(k),u(k — 1),...,u(k —m)]’ are the parameter
vector that must be defined in the transfer function. The general system model
expressing the relationship between the unknown parameter vector and the

regressor vector is expressed in Equation (4.14).
y(k+1) =60"¢(k) (4.14)

¢(k) and y(k + 1) are measured and known values. The main purpose is to find

the unknown paramter vector 6. That is, the 8 to be found by estimating here.

. . A o~ o~ T —1T
Estimated version of the parameter vector 7 = [al,az, ..Qp, by, by, ...,bm] . At

time k is expressed as Equation (4.15), and estimation can be performed.
y(k +1) =0T¢k) (4.15)

where

0" = [@(K), @ (K), .. G (K), Bo(K), by (K), .., b ()]

As stated at the beginning of the subject, the error should be minimized as a result
of the curve fitting, which is the general purpose. In this context, the error

function J; in Equation (4.4.1.3-6) defined below should be minimized.

k N A . (4.16)
Ji= ) y@ = 07 — P
i=1
The solution of equation (4.16) is given in equation (4.17).
i (4.17)

Ji= ) Iy @ + 07 (0)pG — DT = D)
- 29D (i~ DI

=1
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Since the error function J, is desired to be minimum, the partial derivative of the
function Jj to the unknown parameter vector must be 0 (9/, /96 (k) = 0). From
here, the parameter vector found by applying the least square method is

expressed as in Equation (4.18).

While 6 is found here, the matrix inversion method has been applied. This matrix
inversion method can be applied only when the coefficient matrix is a square
matrix and non-singular. Thus, ¢ is square and non-singular matrix. If matrix
determinant is equal non-zero, this matrix is non-singular. Since ¢ is non-
singular, ¢! exists and ¢p1 p = ¢p¢p~1 = 1. Where [ is identity matrix (¢p8 =
Y- ¢ P0)=¢ 7y - 0 =¢7y).

. i 4.18
6 (1) = F(k) )" $(i = DY) )

where

-1

k
FUO = | ) ¢- D"~ 1)
i=1

As a result, all parameters are obtained using Equation (4.18). Thus, as the
advantage of the least square method, derivatives are not taken separately for

each parameter. Solve each parameter with the expression in equation (4.18).

4.4.1.3.1. Estimation of aircraft control surfaces behavior via LSM

The definition, algorithm and working sense of the least squares method are
explained above. In this section, the parameter estimation will be made about
how close the transfer functions formed as a result of the linearized aircraft
motion equations previously described in the mathematical modeling section to
their original state with the least-squares method. The parameter estimation
process will be performed for the transfer functions of all three aircraft control

surface behaviors: elevator, aileron and rudder. The original forms of the transfer
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functions to be obtained in the estimation process were created according to the

flight data in the Howe lecture notes (Howe, 1980).

Before starting to examine the transfer functions explained in the mathematical
modeling section, a transfer function representation in general and the
representation of unknown parameters, known and measurable data through
this transfer function are expressed. In general, system equation in (4.19), system
output in (4.20) and the matrix structure of our system in (4.21), unknown
parameters (a,f,y,a,b,c,d) matrix, output and regressor vector matrix are

shown as follows (4.22).

y as’+ps+y
u s*+asd3+bs?+cs+d (4.19)
y'® = —ay — by — cy —dy + ail + it + yu (4.20)
Vi V1 Y Y1 U W w9 y(4)1
Vo Vo Y2 y2 il Ty up| [T yA(4)2
Vi V3 ¥z ys Uz uz ug| [7€ y @
—d|= 2 (4.21)
a
B
[y |
Therefore,
Vi V1 Y1 Y1 U U U] a7 y(4)1
Vo V2 Y2 Y2 Up Uy U —b yA(4)2
Y3 V3 Y3 Y3 Uz Uz Uz —c y @
@ = 6=1|-d| y= 2 (4.22)
a
B
[y |
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Thus, it has been shown what kind of mantacite is applied while making future

examinations.

In this section, the transfer functions resulting from the behavior of all three
control surfaces will be tried to be estimated by the least squares method. While
performing the estimation process, the algorithm and model created in the
MATLAB/Simulink program will be used. When creating the model, the pitch
transfer function obtained in the mathematical modeling section above was also
created for the transfer functions, which are the ratio of the bank angle to aileron
and rudder dispacement. Doublet inputis defined for elevator, aileron and rudder
displacements which are the inputs of the systems. Doublet inputs are used to
denote side pulses (Klein and Morelli, 2006). The graph in Figure 4.23 below can

be shown as an example of doublet input.

amplitude
o

0 2 4 6 8 i0
time (sec)
x10”

Y v Y Y

08
0.6
04} :

02

0 i R o) O o

0 05 1 156 2 25 3 35 4
frequency (Hz)

power spectrum

Figure 4.23. Doublet input (Klein and Morelli, 2006)
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4.4.1.3.1.1. Elevator control surfaces behavior via LSM

Here, firstly, the transfer function resulting from the behavior of the elevator
control surface will be analyzed. This situation, which occurs as a result of the
longitudinal motion of an aircraft, has been described before. The pitch transfer
function in Equation (3.52) and (3.53) or (3.54) will be estimated by the least
squares method. In order to run the algorithm of the least squares method
created in the MATLAB/Simulink program, a model was created as shown in

Figure 4.24, which also provides the input of the original data.

— ]

— ' I
E ut u2
" ' —~ pech angie
owvalor daglacement

Figure 4.24. MATLAB/Simulink Model for Elevator Control Surface

Below, the pitch transfer function created with the original data is given in

Equation (4.23).

(9) —24.7885s% — 18.2186s — 0.4659

8e)op, 5"+ 2.00725% + 32.526952 + 0.8638s + 0.0179 (4.23)
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When the model in Figure 4.24 and the algorithm created in the MATLAB
program are run, the estimated transfer function obtained by the least squares

method is obtained in Equation (4.24) below.

(9) —24.7885s% — 18.2191s — 0.4447

5, ~ 5% +2.0072s3 + 32.526952 + 0.864s + 0.0186 (4.24)

e’ LSM

Thus, the pitch transfer function resulting from the longitudinal motion of an
aircraft was estimated by the least squares method. The graph in Figure 4.25 was
again created in the MATLAB/Simulink program in order to see the graphical
comparison of both transfer functions by using the original transfer function and

the transfer function estimated by the least squares method.

Data Estimated by LSM
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Figure 4.25. Elevator control surface behavior estimated via LSM

With this graph created in the time domain obtained, the approach of the least

squares method used with the original form of the transfer function is seen.
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4.4.1.3.1.2. Aileron control surfaces behavior via LSM

After examining the transfer function resulting from the longitudinal motion of
an aircraft, transfer functions resulting from the lateral motion of an aircraft will
be examined. Firstly, the transfer function, which is the ratio of the bank angle
resulting from the behavior of the aileron control surface to the aileron
displecement, is discussed. Here again, the transfer functions previously found in
the mathematical modeling section will be used. Least squares method will be
applied using previously found Equation (3.72) and (3.73) or Equation (3.74). In
order to run the algorithm of the least squares method created in the
MATLAB/Simulink program, a model was created as shown in Figure 4.26, which

also provides the input of the original data.

i
—

”1
i
AT

Figure 4.26. MATLAB/Simulink model for aileron control surface

Below is given the transfer function, which is the ratio of the bank angle to aileron

displacement, first created with the original data in Equation (4.25).

59



<¢>) ~ 26.866652 + 0.4725s + 94.0527 (4.25)
) ~ s* + 1.8683s3 + 3.685652 + 6.26485 — 0.0085

a’ oRj
When the model in Figure 4.26 and the algorithm created in the MATLAB
program are run, the estimated transfer function obtained by the least squares

method is obtained in Equation (4.26) below.

(q,’)) 26.866652 + 0.4721s + 94.0737 (4.26)

5, ~ 5% + 1.8683s3 + 3.685652 + 6.2649s — 0.0087

a’ LSM

Thus, the from bank angle to aileron displacement ratio transfer function
resulting from the lateral motion of an aircraft was estimated by the least squares
method. The graph in Figure 4.27 was again created in the MATLAB/Simulink
program in order to see the graphical comparison of both transfer functions by
using the original transfer function and the transfer function estimated by the

least squares method.

Data Estimated by LSM
o, [ ]l

= Original Data
----- Data Estimated by LSM
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Figure 4.27. Aileron control surface behavior estimated via LSM
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With this graph created in the time domain obtained, the approach of the least

squares method used with the original form of the transfer function is seen.
4.4.1.3.1.3. Rudder control surfaces behavior via LSM

Again, the transfer function resulting from the behavior of the rudder control
surface resulting from the lateral motion of an aviator will be examined. The least
squares method was applied by using Equation (3.72) and (3.73) or (3.76)
expressions in the mathematical modeling section. In order to run the algorithm
of the least squares method created in the MATLAB/Simulink program, a model
was created as shown in Figure 4.28, which also provides the input of the original

data.

=)
— ]
—{_ ]

Figure 4.28. MATLAB/Simulink model for rudder control surface

Below is given the transfer function, which is the ratio of the bank angle to aileron

displacement, first created with the original data in Equation (4.27).
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<¢) _ 0.5749s2 — 0.2124s — 4.2481
F) "~ s% + 1.8683s3 + 3.685652 + 6.2648s — 0.0085 (4.27)

7 ORJ
When the model in Figure 4.28 and the algorithm created in the MATLAB
program are run, the estimated transfer function obtained by the least squares

method is obtained in Equation (4.28) below.

<¢) 0.5749s% — 0.2128s — 4.2263

5.) T s*+1.867853 + 3.685052 + 6.26365 — 0.0031 (4.28)

T LSM

Thus, the from bank angle to rudder displacement ratio transfer function
resulting from the lateral motion of an aircraft was estimated by the least squares
method. The graph in Figure 4.29 was again created in the MATLAB/Simulink
program in order to see the graphical comparison of both transfer functions by
using the original transfer function and the transfer function estimated by the

least squares method.
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Figure 4.29. Rudder control surface behavior estimated via LSM

With this graph created in the time domain obtained, the approach of the least

squares method used with the original form of the transfer function is seen.
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4.4.2. Online estimation

Estimate the parameters of a model when new data is available during the
operation of the model. Offline parameter estimation techniques were applied
after the flight after data collection was completed. These are parameter
estimation methods that give intermediate results when new data is received
during the flight and during the experiment, that is, during data collection. It
enables parameter estimates to be calculated in real time without the need to
process the entire data set as additional measurements are added. It is also
advantageous in terms of specifying model structure inadequacy and / or
identifiability problems through time variations in parameter estimates and
error boundaries. It is a stronger type of parameter estimation method in terms

of monitoring parameters that change over time (Klein and Morelli, 2006).

4.4.2.1. Recursive least square method

It is an iterative least squares method used as a real time parameter estimation
method. It is similar to the least squares method in general logic. It differs from
the least squares method in that it is a method that can get results in real time,
that is, during the experiment. Because in the least squares method, the process
starts after the data is completely collected, and if a new data is received after
data collection is completed, the parameter estimation is made from the first data
again. However, the part that makes this method advantageous is that when new
data arrives, it is not necessary to do all the operations from the beginning, and
the last incoming data is processed. The general mentality of the recursive least
squares method prevents the rework of old data, making the procedure efficient
for real-time processing. Thus, it can be applied more conveniently to aircraft
systems with variable dynamics with the recursive least squares method, which
is a real time parameter estimation. With this method, the unknown parameters
will be estimated, as is done in the least squares method. While doing this, the
algorithm, which is similar to the algorithm of the least squares method but has
some differences due to its repetition, will be explained. The recursive least

squares method makes real-time estimates according to the least squares
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method. The data flow can be fast and the data model can change instantaneously
due to the dynamic nature of an aircraft system. Therefore, it is more convenient
to update the prediction of the previous unknown parameters 6 (k) for the new
row of data than to re-analyze all data for each future data. 6 (k) estimation
process in Equation (4.18) was specified above with the least squares method.
Now, the approach and algorithm of the recursive least squares method will be
explained below in case of recursively new data. . While explaining the algorithm
of the RLS method, the k index, which is also used in the description of the LS
method, is used. k index represents the number of data lines. While describing
the LS method, assuming that there are k data lines, the result of the unknown
parameters was expressed in Equation (4.18). Now assuming that new
measurements are made, that is, when a new data arrives in k rows of data, the
function J, in Equation (4.16) will be updated to (k + 1),u(k + 1)andy (k +
1) and the expression in Equation (4.29) will appear. Thus, in the light of these
mentioned situations, how the RLS method will be applied and what kind of an

algorithm it has will be explained below.

k+1

Jiwa = Y Iy = 07 (e + Dg(i = DI

i=1

(4.29)

Thus, the updated version of the parameter matrix in Equation (4.18) found with

the LS method above is expressed in Equation (4.30) below.

k+1

4.30
@(k+1)=F(k+1)Z¢(i—1)y(i) (+30)

where

k+1 -1
F(k+1) = [z d(i — 1)pT(i — 1)]

From Equation (4.16), the following Equation (4.31).
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k
> $li= Dy = FI)™0 (0 (431)

From Equation (4.30), the following Equation (4.32) is expressed.

k+1 k

> b= Dy = ) ¢~ Dy + py(k + 1) (432)

Equation (4.30) according to the expression in Equation (4.32) is expressed as in

Equation (4.33) as follows.

O(k+1)= F(k+ D[F(k)™8 (k) + p(k)y(k + 1) (4.33)
The F (k) expression previously explained is stated below to remind you again.
-1

k
F(k) = [Z B - D" - 1)]

F (k) expression contains F(k)~! as seen in Equation (4.34) as below.

k
FUO™ =) ¢l - D" -1 (4.34)
i=1

According to the expression found in Equation (4.34), the expression F(k + 1)~!

is expressed in Equation (4.35) as follows.

k+1

Flk+ D)™ = ) ¢li= D¢~ 1) = F)™ + $()$" (k) (435)

i=1

Thus, F (k)™ expression is found as in Equation (4.36).
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Fk)1=Fk+1D)=¢pk)pT(k) (4.36)

Thus, Equation (4.33) is updated as follows in Equation (4.37) and (4.38) as a

result of the expressions stated above.

Ok +1) = F(k+ D[(F(k+1)7" = p(k)p" (k) (k) + p(k)y(k + 1)] (4.37)
Ok+1)= 0 (k) +Fk+DpR)[yk +1) — 8T (k)p(k)] (4.38)

Therefore, 8(k + 1) = (k) + [correction term], the expressions in correction
terms are gain and error. Where gain = F(k + 1)¢(k) and error = y(k + 1) —
67 (k)¢ (k). Then Express Equation (4.39) from equation (4.36) to express
F(k + 1) iteratively.

F(k+1) = [F(k) "o U)e" (k)] (4.39)

Then Equation (4.40) is then expressed using the Matrix Inversion Lemma rule

for Equation (4.39).

F(k+1) = F(k) = F(k)¢p U)o ()F (k) p (k) + 117 T (k)F (k) (4.40)
Thus F (k + 1) can be expressed in the form in Equation (4.41) as follows.

F(k)pk)¢" (k)F (k) (4.41)

Flk+1) = F(k) == T () F (k) (k)

Finally, Equation (4.38) is updated like 8(k + 1) in Equation (4.42).

F(k)pK)@" (K)F (k)
1+ ¢"(F ()¢ k)

Bk+1) =0 (k) +] 16Uy (k + 1) — 87 (k)b (k)] (4.42)

Thus, the unknown parameters were found by applying the algorithm logic of the
RLS method. With this method, as explained above, the method and logic applied

according to the new line of data are expressed.
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After the expression of the parameter matrix is found, the Matrix Inversion
Lemma method used when passing from Eqauation (4.39) to Equation (4.40)

expression is also expressed below.

Matrix Inversion Lemma: if A is nonsingular, B and C have compatible

dimensions, then

(A+BC) '=A"1-A"B(CA'B+D)71cA™?

4.4.2.1.1. Estimation of Aircraft Control Surfaces Behavior via RLSM

Previously, the estimation of transfer functions resulting from the behavior of
aircraft control surfaces was carried out using the least squares method. In this
section, transfer functions arising from the behavior of aircraft control surfaces
will be analyzed using the recursive least squares method, and a comparison with
the original data and graphical results will be presented. In this context, as in the
LS method, examinations were carried out in all three control surfaces in this
method. Here again, the original forms of the transfer functions to be obtained in
the estimation process were created according to the flight data in the Howe

lecture notes (Howe, 1980).

4.4.2.1.1.1. Elevator control surfaces behavior via RLSM

First, we started with the transfer function, which again results from the behavior
of the elevator control surface. The formation process of the transfer function is
expressed in the mathematical modeling part, as it is also mentioned in the LS
method. This situation, which occurs as a result of the longitudinal motion of an
aircraft, has been described before. The pitch transfer function in Equation (3.52)
and (3.53) or (3.54) will be estimated by the least squares method. In order to
run the algorithm of the least squares method created in the MATLAB/Simulink
program, a model was created as shown in Figure 4.30, which also provides the

input of the original data.
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l ™ o
sevator daplacement = -

Figure 4.30. MATLAB/Simulink model for elevator control surface

Below, the pitch transfer function created with the original data is given in

Equation (4.43).

(9) —24.7885s% — 18.2186s — 0.4659

5. T %+ 2.0072s3 + 32.5269s2 + 0.8638s + 0.0179 (4.43)

e’ ORJ
When the model in Figure 4.30 and the algorithm created in the MATLAB
program are run, the estimated transfer function obtained by the least squares

method is obtained in Equation (4.44) below.

<0) —24.7885s% — 18.2191s — 0.4429

5. T 5%+ 2.0072s3 + 32.5269s2 + 0.8639s + 0.0178 (4.44)

€’ RLSM

Therefore, the pitch transfer function resulting from the longitudinal motion of
an airaircraft was estimated by the recursive least squares method. The graph in

Figure 4.31 was again created in the MATLAB/Simulink program to see the
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graphical comparison of both transfer functions using the original transfer
function and the transfer function estimated by the recursive least squares

method.
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Figure 4.31. Elevator control surface behavior estimated via RLSM

With this graph created in the time domain obtained, the approach of the
recursive least squares method used with the original form of the transfer

function is seen.

4.4.2.1.1.2. Aileron control surfaces behavior via RLSM

After the transfer function estimation due to the longitudinal motion of an aircraft
is performed, the estimation of the transfer functions resulting from the lateral
motion of an aircraft will also be performed. First, the transfer function, which is
the ratio of the angle of bank resulting from the behavior of the blade control
surface to the blade displacement, is investigated. Here again, the transfer
functions previously found in the mathematical modeling section will be used.
Recursive Least Squares Method will be applied using the previously found

Equations (3.72) and (3.37) or Equation (3.74). In order to run the algorithm of
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the recursive least squares method created in the MATLAB/Simulink program, a
model was created as shown in Figure 4.32, which also provides the input of the

original data.

T ]

Figure 4.32. MATLAB/Simulink model for aileron control surface

Below is given the transfer function, which is the ratio of the bank angle to aileron

displacement, first created with the original data in Equation (4.45).

(qb) _ 26.866652 + 0.4725s + 94.0527
5 " s*+ 1.8683s3 + 3.6856 + 6.2648s — 0.0085 (4.45)

a’ oRj
When the model in Figure 4.32 and the algorithm created in the MATLAB
program are run, the estimated transfer function obtained by the least squares

method is obtained in Equation (4.46) below.

(qb) 26.8666s% + 0.4722s + 94.0603

8a’ prsm ~ 5%+ 1.8683s3 + 3.6856 + 6.2648s — 0.0085 (4.46)
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Thus, the from bank angle to aileron displacement ratio transfer function
resulting from the lateral motion of an aircraft was estimated by the recursive
least squares method. The graph in Figure 4.33 was again created in the
MATLAB/Simulink program in order to see the graphical comparison of both
transfer functions by using the original transfer function and the transfer

function estimated by the recursive least squares method.
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Figure 4.33. Aileron control surface behavior estimated via RLSM

With this graph created in the time domain obtained, the approach of the
recursive least squares method used with the original form of the transfer

function is seen.
4.4.2.1.1.3. Rudder control surfaces behavior via RLSM
Again, the transfer function resulting from the behavior of the rudder control

surface resulting from the lateral motion of an aviator will be examined. The

recursive least squares method was applied by using Equation (3.72) and (3.73)
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or (3.76) expressions in the mathematical modeling section. In order to run the
algorithm of the recursive least squares method created in the MATLAB/Simulink
program, a model was created as shown in Figure 4.34, which also provides the

input of the original data.

=]
— ]
—{ ]

ol o

[

Figure 4.34. MATLAB/Simulink model for rudder control surface

Below is given the transfer function, which is the ratio of the bank angle to aileron

displacement, first created with the original data in Equation (4.47).

<¢) 3 0.5749s% — 0.2124s — 4.2481
> " s* + 1.8683s3 + 3.685652 + 6.2648s — 0.0085 (4.47)

T’ OR]
When the model in Figure 4.34 and the algorithm created in the MATLAB
program are run, the estimated transfer function obtained by the least squares

method is obtained in Equation (4.48) below.

<¢) 0.5749s% — 0.1868s — 4.2416

5. ~ 5% + 1.86853 + 3.685952 + 6.2648s — 0.0082 (4.48)

T’ RLSM
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Thus, the from bank angle to rudder displacement ratio transfer function
resulting from the lateral motion of an aircraft was estimated by the recursive
least squares method. The graph in Figure 4.34 was again created in the
MATLAB/Simulink program in order to see the graphical comparison of both
transfer functions by using the original transfer function and the transfer

function estimated by the recursive least squares method.
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Figure 4.35. Rudder control surface behavior estimated via RLSM
With this graph created in the time domain obtained, the approach of the

recursive least squares method used with the original form of the transfer

function is seen.
Thus, the transfer functions resulting from the behavior of all three control

surfaces were estimated by using the recursive least squares method as well as

the least squares method.
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4.4.2.2. Time-varying parameter

Other online parameter estimation methods are time varying parameter
estimation methods. they are applied when the parameters change over time. ie
the parameters are not fixed, they are used when the model parameters change
over time. To express these methods, a few changes have been made in the
algorithm of the recursive least square method, which is the online parameter

estimation method described earlier. These methods are briefly discussed below.
4.4.2.2.1. Exponentially Weighted Least Squares

In this method, the model parameters do not remain constant but gradually
change according to a determined weight over time. The general function of this

method is expressed as follows in (4.49).

k

@) =05 Y @) - " (@)6) (4.49)

i=k-m

Where m refers to the number of past values weighted with the tops of the 4
value in the data set. The aim is to minimize this function. The algorithm to be
created minimizes the result of the function, which is our goal. The algorithm of
this method is expressed by developing the algorithm of the recursive least

square method described in (4.50) to (4.52).

Bier1 = OkKies1[Zir1 — Xier O] (4.50)

K1 = Pexpesr (A4 1+ Xppr " PreXpyq) ™t (4.51)
1 _

Py = 2 [Pr—PrXpes1(A 4 Xpeu1 " PeXier1) " Xpesn” Pr] (4.52)

Therefore 8y, Ky, and Py, expressions are updated.
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4.4.2.2.2. Kalman filter

In a dynamic system represented by the state space model, it is the filter that can
predict the state of the system from the input and output information together
with the previous information of the model. Although it is named as a filter; an
algorithm that predicts the next state of the system based on previous states. It
also allows you to estimate as close to reality as possible from noisy and
imprecise data. In Figure 4.36 shows the working mechanism of the kalman filter.

In general the algorithm of Kalman filter (4.53) to (4.68) is described.

Control Inpuis Sensor Measurements
» System >
Kalman Filter:
: Predicted i Estimated
H Model [Measurements i State
: d Output : »
: Predicted State Matrix H >
: i Estimated
: i Parameters

Figure 4.36 Kalman filter (Charles, et al. 2008)

Kalman filters are used to predict states based on dynamical systems in the form
of state spaces. The process model defines the progress of the state from time k —

1 to time k as:

O = Pp—10k—1 + W1 (4.53)
where @;_, state transition matrix applied to vector 6;_,, wi_; is the noise
vector and E denotes expected value. The relationship between k states and

measurements in the current time step is matched with the measurement model

described as:

Zy = kaQk + Vi (4‘54‘)
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where z, is the measurement vector, X is the measurement matrix, and vy, is the

measurement noise vector.

Elwew™; ] = Qb

E[v,v; ] = 628, (4.55)
Orevk-1 = Pre—10(k-1\k-1) (4.56)
Pevk-1 = Pr—1Pk—1\k-1)Pr—1" + Q-1 (4.57)
Ok = Baeie-1) + Kie[zie = X7 1 Bjge—1] (4.58)
Pivie = [I = KiexT 1] Provie-1 (4.59)
Ki = Piovie—1%5e[x7 1 Piove—1%5c + 0%5] 7 (4.60)

Where P state covariance matrix, state vector of the kalman filter in this case is
the parameter vector 6, Q noise covariance matrix and o’noise covariance are

constant. @, = [ is implemented to simplify the algorithm.

ék = Uk-1 + Wg_1 (461)

Thus, Kalman filter equations are expressed as follows.

Biove-1) = Oge-1\k-1) = Bre—1 (4.62)
Pik-1 = Pr—1\k-1 + @ (4.63)
B = B—1 + Kic[zie — X" 10y —1] (4.64)
Pk = [I = KiexT ] Py je—1 (4.65)
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Ki = Piovi—1%pc[xT 1 Pive—1.Xx + 0% ] 7 (4.66)

If w, = 0and Q = 0, state model is

Hk = 9k—1 (467)

Pk\k—l = Pk—l\k—l =Py (4.68)

4.4.2.2.3. Sequential least square

The least square solution applied the function in Equation (4.49) the result is as

follows in (4.69) to (4.74).

B = [Mi, 17 Sk, (4.69)
Cov[Bi] = 02 [My,]7* (4.70)
My, = X pom A xyx, ™ (4.71)
Sk, = Dbekem AT X2 (4.72)

My, and Sy ,are updated recursively and expressed as follows.

1\/[](/1 = AM(k_l)A + kakT (4‘73)

Skl = AS(k_l)A + XkZy (474)

4.4.3. Comparison of parameter estimation via RLSM and LSM

The parameter estimation methods used for parameter estimation, offline and
online, and the general mentality of the use of estimation operations with these

methods have been expressed in the above sections. Two methods frequently
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used in these, namely RLS and LS methods, were emphasized and samples were
carried out within the framework of estimation of transfer functions resulting
from the behavior of an aircraft control surfaces with both methods. Once again,
offline methods were non-real-time methods. In other words, they are the
methods used after data analysis is completed after the flight is completed. Online
methods, on the other hand, are methods that are used in real time and can be
used for any new data that may come during flight. In this section, the online
parameter estimation method RLS was compared with the offline parameter
estimation method LS in parallel with the above. While comparing these two
methods, graphically overlapping outputs were drawn in MATLAB/Simulink

program and analyzed.

Firstly, the comparison process was started with the pitch transfer function
generated as a result of the behavior of the elevator control surface. This transfer
function has previously been done with both methods. Now, in order to see the
accuracy of the methods with each other, the overlapping process in Figure 4.37

has been performed.
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LSM vs RLSM
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Figure 4.37 Estimated via RLSM and LSM (8/6,)

Thus, estimate graphic obtained by both methods was created. For this pitch
transfer function, which is also examined in terms of providing information about
the transferred functions or the system, the pole zero map has been extracted as
the original form, obtained by LS and RLS methods. This pole zero map is given

in Figure 4.38 below.

79



|; Pole-Zero Map RELVICESEN;
0.14 0.1 0.068 0.048 0.03 0.044 ¢
................................................... e

PO bee U TS RLSM |4

______________________________ LSM 13

. P
o PO e T e T T
1

Imaginary Axis (seconds™)

............................

5 ﬂ4 ............................................................. | 5
B T 3

4 _1122. ............................................... : i
| | DMI .......... | ' D,‘ ....... o DDEBD o II}.DB D; > :

-5-1 09 08 07 06 05 04 -03 -02 -01 8¢

Real Axis {secnnds'1}

Figure 4.38 Pole zero map for pitch transfer function

Now, the transfer functions resulting from the behavior of the aileron and rudder
control surfaces resulting from the lateral motion of an aircraft are compared
with both methods. First of all, the transfer function resulting from the behavior

of the aileron control surface for the lateral motion with both methods is given in

Figure 4.39 below.
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LSM vs RLSM
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Figure 4.39 Estimated via RLSM and LSM (¢/6,)

Pole zero map has been extracted as the original forms obtained by LS and RLS
methods for the transfer function, which is the ratio of this bank angle to aileron
displacement, which is also examined in terms of providing information about
the transferred functions or the system examined after the estimated graphs. This

pole zero map is given in Figure 4.40 below.
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Figure 4.40 Pole zero map for bank angle to aileron displacement
Likewise, the transfer function resulting from the behavior of the rudder control

surface resulting from the lateral motion of an aircraft is graphically plotted

graphically with both methods, as shown in Figure 4.41 below.
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Figure 4.41 Estimated via RLSM and LSM (¢/6,)
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Likewise, for the transfer function, which is the ratio of this bank angle to rudder
displacement, which is examined in terms of providing information about the
transfer functions or the system examined here, the pole zero map has been
extracted as the original forms obtained by LS and RLS methods. This pole zero

map is given in Figure 4.42 below.
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Figure 4.42 Pole zero map for bank angle to rudder displacement

Thus, the unknown parameters in the transfer functions of the aircraft control
surfaces were analyzed in time domain by both methods and the transfer
functions generated by the new parameters as a result of the estimation were
specified. In addition, simulations expressing the result obtained when compared
with the original transfer functions of estimation methods examined in
MATLAB/Simulink program are shown. In addition to the graphical simulations
obtained, it has been given in pole zero maps obtained in MATLAB/Simulink
program in order to give information about the systems or the analyzed transfer
functions. As a result of simulations, the integral square erros (ISE) table was

created in order to observe the error difference of both methods according to the

83



original data and which method is closer to the original data. the result is given

in the Table 4.1. ISE is the statistical information used to see the errors created

by integrating the square of the system error throughout the fixed time interval

to obtain information about the performance of the systems created.

Table 4.1 ISE table for LSM and RLSM

Parameter Elevator Control | Aileron Control | Rudder Control
Estimation Methods Surface (ISE) Surface (ISE) Surface (ISE)
LSM 0.0001386 0.00009236 0.0003527
RLSM 0.0001354 0.0000348 0.000117
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5. ESTIMATION OF DOMINANT PARAMETERS VIA LSM AND
RLSM

Many parameter estimation methods were mentioned above, LS and RLS
methods were discussed in detail and various analyzes were performed. With
both methods, the process of estimating transfer functions extracted according
to the behavior of aircraft control surfaces is explained. In this part, the
realization process of the estimation of some dominant parameters used in the
formation of the transfer functions described and predicted in the above sections
will be explained. The dominant parameters estimated here are the parameters
of a linear dynamic aircraft model. While finding these aerodynamic parameters,
they were compared with the actual aircraft parameters used in the formation of
the originally determined transfer functions, and the error rates of the estimated
parameters found by both methods were extracted. The parameters studied and
tried to be predicted were specified in chapter 3 in the mathematical modeling
section during the extraction of transfer functions. Under this chapter, the
mathematical explanation of the equations of motion of a linear dynamical
aircraft model is expressed and finally, the environment that serves to express
some transfer functions has been created by applying the linearization process to
these equations. Thus, the prediction of the dominant aerodynamic parameters
specified in Equation (3.47), which is expressed from linearized aircraft motion
equations, has been realized. In the mathematical operations performed in the
process of finding parameters, transfer functions estimated by both methods are
used. The parameters were tried to be found by using the Equation (3.52), (3.53)
and (3.56) transfer functions specified in the chapter of mathematical modeling.
In other words, when finding the parameters, both the pitch transfer function and
the transfer function, which is the ratio of the angle of attack to elevator
displacement, are used. As a result of the mathematical operations performed on
these transfer functions, the parameters are estimated. After the transfer
functions used were estimated with LS and RLS methods, the process of finding

the dominant parameter was started.
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5.1. Estimation Dominant Parameters via LSM

As explained at the beginning of chapter, the process of finding these parameters
was carried out by both methods. First, the realization process was carried out
with the LS method. Subsequently, the original and estimated versions of the
parameters found as a result of this method are expressed. In this chater, firstly,
the transfer function in Equation (4.24) estimated by LS method is processed.
This transfer function is the pitch transfer function created as a result of the
longitudinal movement of an aircraft. The formation process of this transfer
function has been described in the chapters above. In the above operations, this
transfer function was estimated using the LS method. In this section, the basic
dominant parameters, which are also stated in Equation (3.47), are tried to be
estimated in the formation of this transfer function. While performing the
estimate operation, was started with the transfer function given in Equation
(4.24). However, as observed in the process, there was a difference between the
number of equations created and the number of unknown parameters. Since the
number of equations obtained here is less than the number of unknown
parameters, a result could not be reached. Therefore, the transfer function, which
is the ratio of angle of attack to elevator displacement, again resulting from the
longitudinal motion of an aircraft, is discussed. In this transfer function, the
formation process is explained as in the pitch transfer function. Equation (3.56),
which is fully expressed parametrically, is also given. For this reason, before
working with this transfer function, estimation was performed with the LS
method, as in the other chapters. Thus, before starting the dominant parameter
process, estimation process with LS method is explained in the transfer function,

which is the ratio of the angle of attack to elevator displacement.

For the estimation process, the model prepared in the MATLAB/Simulink
program is given in this transfer function, as shown in Figure 5.1. This model has
been implemented differently than the other model used, due to the large number
of parameters. Also in the MATLAB program, the algorithm of the LS method is
set to estimate the transfer function, which is the ratio of angle of attack to

elevator displacemet.
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Figure 5.1 MATLAB/Simulink model for a /4,

After the model has been created, the transfer function, which is the ratio of the
angle of attack to the elevator displacement, is given in Equation (5.1) below for

the demonstration of the estimation process, created with the original data.

(a) 0.0515s3 — 23.4487s% — 0.621s — 0.0128

5. T %+ 2.0072s3 + 32.526952 + 0.8638s + 0.0179 (5.1)

e’ ORJ

When the model in Figure 5.1 and the algorithm created in the MATLAB program
are run, the estimated transfer function obtained by the least squares method is

obtained in Equation (5.1-2) below.

(a) 0.0515s3 — 23.4487s% — 0.6212s + 0.013572

5.) T $*+20071s% + 32.527s% + 0.8641s + 0.0178 (5.2)

e’ LSM

Since there is an estimated transfer function, the process of finding the dominant
parameters can be started. There are two mathematically obtained transfer
functions obtained by LS method. Thus, the number of equations has been

increased by the number of unknown parameters. By using these two transfer
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functions, solutions are obtained with equation solve commands in the MATLAB
program. Thus, below, the values of the dominant parameters originally used and

the values found as a result of the estimation process are given in Table 5.1.

Table 5.1 Estimated parameters via LSM

Parameters Original Values Estimated via LSM

Cy 0.0642 0.0644

Cp 0.0514 0.0486

Cum, -0.4 -0.4144

Cumy -2 -1.9218

Cr, 3 2974

Cums, -0.3 -0.32

Crs, 0.2 0.2008

Thus, the dominant parameters obtained have been found. Now the error table
has been extracted to see to what extent the parameters approached the original

values. this table is given in Table 5.2.

Table 5.2 Error table for parameters via LSM

Parameters Error Rates
93 0.00311
Cp 0.0545
Cumy, 0.0360
Cumg, 0.0391
CL, 0.0087
Cus, 0.066
CLs, 0.004

5.2. Estimation Dominant Parameters via RLSM

After the dominant parameters were found with the LS method, the same process
was applied this time for the RLS method. Here again, estimated pitch transfer
function and transfer function, which is the ratio of angle of attack to elevator

displacement, are used. The processes described above in chapter 5.1 are also
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applied here. Again, the process was first started by using the RLS method
estimated using the pitch transfer function given in Equation (4.44). Then, after
the use of the transfer function, which is the ratio of the angle of attack to elevator
displacement, this transfer function was tried to be estimated by using the RLS
method. While performing the estimate process, Figure 5.1 is used here, as in the
LS method. Also here, with the model, the algorithm of the RLS method was
created in the MATLAB program. Before proceeding to the domiant parameter
finding process, the estimate operation of the transfer function, which is the ratio
of the angle of attack to the elevator displacement, created with the original data
given in Equation (5.1), was performed with the RLS method. The estimate
operation was performed after running the model in Figure 5.1 and the algorithm
created in the MATLAB program. Its estimated form is given below in Equation

(5.3).

(0{) _ 0.0515s3 — 23.4487s% — 0.6214s + 0.0135725

5. T 54+ 2.0072s3 + 32.5269s2 + 0.8638s + 0.0179 (5.3)

€’ RLSM

Since there is an estimated transfer function, the process of finding the dominant
parameters can be started. There are two mathematically obtained transfer
functions obtained by RLS method. Thus, the number of equations has been
increased by the number of unknown parameters. By using these two transfer
functions, solutions are obtained with equation solve commands in the MATLAB
program. Thus, below, the values of the dominant parameters originally used and

the values found as a result of the estimation process are given in Table 5.3.
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Table 5.3 Estimated aerodynamic via RLSM

Paramters Original Values Estimated via RLSM

Cy, 0.0642 0.0644

Cp 0.0514 0.049

Cum, -0.4 -0.4191

Cumy -2 -2.01

Cr, 3 2.976

Cums, -0.3 -0.319

Crg, 0.2 0.2006

Thus, the dominant parameters obtained have been found. Now the error table

has been extracted to see to what extent the parameters approached the original

values. this table is given in Table 5.4.

Table 5.4 Error table for parameters via RLSM

Paramters Error Rates

C, 0.00311
Cp 0.0466
Cumy, 0.04775
Cug 0.05

CLy 0.008

CMse 0.0633
CLse 0.003
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6. CONCLUSION AND RECOMMENDATIONS

In this study, how to use system identification and system identification
techniques in the aviation field, examining and analyzing the accuracy of the
results. In this context, primarily the parameter estimation method of the
MATLAB program, various parameter estimation methods are explained. Some
of these are explained in detail and shown with applications in the aviation field.
In order to examine and see the system definition, firstly, the system idetification
tool of the MATLAB program was examined. In this context, the idetification of
the pitch transfer function obtained as a result of extracting the dynamic aircraft
model of an aircraft was performed using this tool. Then, RLS and LS meodes,
which are examples of online and offline parameter estimation methods, are
discussed. By using these methods, the transfer functions resulting from the
dynamic aircraft model of an aircraft have been estimated. These defined transfer
functions are the transfer functions resulting from the behavior of the aircraft
control surfaces as a result of the longitudinal and lateral motion of the aircraft.
As a result of these analyzes, estimated transfer functions using both RLS and LS
methods are compared and the results are shown. Therefore, as the main purpose
of this study, it has been tried to show that the real time parameter estimation
method, RLS method, gives better results. In this context, LS method, another
parameter estimation method described for comparison, and transfer functions
and graphs are compared for both methods. In order to see the comparisons
mathematically, the ISE table was created. By looking at this table, it can be seen
how close to the original forms of the transfer functions obtained by estimating
them. While creating this table, it was created for both methods and the approach
was seen in both methods. Thus, when looking at the results, although the RLS
method made a certain successful estimation in the LS method, the estimation

error rate of the RLS method was found to be less than the LS method.

In general, the obtained transfer functions, graphs, error tables of the methods
and the result put forward are explained. The graphics shown and obtained here
were created by defining doublet input as input to the model created in

MATLAB/Simulink, as outlined above. Thus, as can be seen in the graphs, better
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results were obtained with both methods in terms of proximity to the original
data. Until this stage, the graphics that came out by using more than one method
were interpreted. Before using doublet input, more than one input value has been
added to the model. In the first step, single sine value is used. Thus, the estimate
values and graphics obtained were found to be very close to each other. Then, the
sum of five sinusoidal values of different frequency and amplitude is defined to
the model as the input value. With this result, the rate of proximity was higher.

Thus, the results have been observed with the change of input values.

After the analysis comments with different input values, the analyzes made with
different data numbers are expressed. In the study, appropriate data numbers
were used to reach the closest estimate of the results obtained above. However,
some analyzes and determinations were made in order to see the effect of the
changes in the data numbers. In this context, various changes were made in the
number of data in the algorithms applied in the MATLAB program and the results
were observed. The evaluation made according to this number of data was also
carried out for the LS and RLS methods. Considering that the results obtained
above are ideal results, when analyzes were performed with a smaller amount of
data than the number of data used in obtaining those results, there was no change
in the estimation process performed by the RLS method, while partial
divergences occurred in the LS method. These results are given in Figure 6.1,
Figure 6.2 and Figure 6.3 below. While performing these results, the same

simulation time was applied as above.
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Figure 6.1. Estimated via LSM for decreasing number of data (6/4,)
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Figure 6.3. Estimated via LSM for decreasing number of data (¢/6;)

Also, in addition to the results analysis, the results of the analysis for both
methods, this time towards increasing the number of data, were shared. Here
again, the RLS method performed a successful estimation process. With the
increase in the number of data in the LS method, more successful results were
acquired in the estimation results obtained. Thus, the behavior of the LS method

to increase the number of data is shown in Figure 6.4, Figure 6.5 and Figure 6.6.
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Figure 6.4. Estimated via LSM for increasing number of data (68/6,)
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Figure 6.5. Estimated via LSM for increasing number of data (¢/6,)
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Figure 6.6. Estimated via LSM for increasing number of data (¢ /6,)

Apart from the analysis according to the change in the number of data, a certain
amount of error has been applied in order to see the changes in the result of the
estimation process in case of breaking the system. In the systems used and
examined, the originally used parameters were changed by increasing them
starting from 10 percent before starting the estimation process. As the

percentage rate increased, the error rate in the estimation result increased as a

percentage.

In addition, some step-response properties are also examined in order to see the
time responses of these transfer functions. Thus, the system step-response
characteristic between the original forms of the transfer functions and the forms
estimated by the RLS and LS methods were investigated. In this context, as the
step-response characteristics, rise time, settling time overshoot, damping ratio
and natural frequency values were examined. The time responses of the systems
obtained in all three forms are given in Table 6.1 below. As a result, the time

responses of the examined systems, namely the step-response characteristics,
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were interpreted by looking at this table, and it was understood that the system
responses of the transfer function obtained with RLS were closer to the responses
of the original transfer function. Here, among the transfer functions analyzed
above, only the time responses of the pitch transfer function are examined. In
other words, the properties given in Table 6.1 are the pitch transfer function.
Step-response characteristics information could not be obtained because other
examined transfer functions displayed unstable behavior starting from their
original forms. This situation can be understood by examining the pole-zero maps
created in chapter 4 above. Note that the damping ratio and the natral
frequenices are depicted for dominant poles of the system given in Equation

(4.23) or (4.43), (4.24) and (4.44).

Table 6.1 Step-response characteristic values

Step-Resp(_)n§e Original Form Estin_lated Estim_ated
Characteristic Form via RLSM | Form via LSM
Rise Time 47.4256 45.7771 43.7028
Settling Time 297.9623 299.7469 299.8347
Overshoot 19.9879 20.9202 22.3634
Damping Ratio 0.5650 0.5670 0.5560
Natural Frequency 0.0235 0.0234 0.0239

After estimating transfer functions, estimation of some dominant parameters
used in the formation process of these transfer functions is explained. the process
of finding dominant parameters and the paths followed are expressed in chapter
5. As explained there, the equation number is obtained by using more than one
transfer function obtained as a result of the motion equations resulting from the
longitudinal motion of an aircraft. Because the number of equations obtained
with the pitch transfer function we have in the first place was less than the
number of unknowns. Then, the ratio of angle of attack to elevator displacement,
another transfer function resulting from longitudinal motion, was deducted. This
transfer function has also been estimated by both methods as previously applied
to the pitch transfer function. Thus, as the last case, some dominant parameters
were found mathematically using the equation solving process in the MATLAB

program with these transfer functions obtained from both methods. The
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formation of these transfer functions and their connection with the dominant
parameters are expressed in the chapter of mathematical modeling. Some
dominant parameters were obtained using RLS and LS methods. Separate
parameter table has been created with both methods. When looking at these
tables, it can be observed that each parameter is close to its original values. Again,
during the estimation process of the parameters, the RLS method predicted
better than the LS method in terms of proximity to the original values. Separate
error tables were prepared to see the estimation closeness of both methods. Here,
too, the proximity of the methods to the real data for each parameter is observed.

Among these predicted parameters, the CMQ and CDCLZ parameters have been

estimated far from their true values. With both methods, these two parameters

have a higher error rate compared to other parameters.

After these dominant parameters were found, some changes were made on some
of them and they were observed. The purpose of this observation was to see the
effect of the change of parameters on the general system. In this context, first of
all, the original values of the €y, parameter and the values that we estimate gave
different values to the system. Thus, it has been determined that the effect of the
estimated transfer functions obtained initially in general is almost nonexistent.
These operations were repeated with another parameter. this time, the effect of
Cy, parameter was tried to be observed by giving different values from its
original value. Thus, it has been observed that this parameter changes in the
transfer functions estimated according to different values. It is for this reason that
the €y, parameter has a significant effect on whether its value can be changed

for the general system.
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