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ABSTRACT 
 

M.Sc. Thesis 
 

 SYSTEM IDENTIFICATION AND ESTIMATION DOMINANT PARAMETERS OF 
AIRCRAFT LINEAR DYNAMICAL MODEL VIA RECURSIVE LEAST SQUARE 

METHOD 
 

Mehmet ŞAHİN 
 

Istanbul Commerce University 
Graduate School of Applied and Natural Sciences 

Department of Mechatronic Engineering 
 

Supervisor: Prof. Dr. Muammer KALYON 
2021, 101 pages 

 
 

In order to examine the behavior of a system, its mathematical model must be 
extracted. System identification methods are needed to extract the mathematical 
model. Thus, with the system identification process, the mathematical models of 
systems with certain inputs and outputs are defined. 
 
In this study, the analysis of the transfer functions, which are formed as a result 
of the behavior of an aircraft, with the system definition methods, in the 
MATLAB/Simulink program. 
 
Parameter estimation methods were used as the system identification method 
and comparisons were made between the methods and correct results were tried 
to be achieved. 
 
Parameter methods used in aviation are generally the methods that make real-
time parameter estimation in order to give more accurate results. The first of 
these is the recursive least squares method, which is generally emphasized in this 
thesis. In addition, the least squares method, which is not used in real time, is 
explained in detail. 
 
In order to prove that the recursive least squares method gives more accurate 
results, the analyzes made with both recursive least squares and least squares 
are compared and examined and ISE (Integral Square Error) table is prepared to 
observe the error rate. Thus, the success of the recursive least squares method 
has been observed and it has been understood that it gives more realistic results. 
 
Keywords: Aerodynamic parameters, aircraft control surfaces, least square 
method, recursive least square method,  system identification. 
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ÖZET 
 

Yüksek Lisans Tezi 
 

SİSTEM TANIMLAMA VE ÖZYİNELİ EN KÜÇÜK KARELER METODU İLE 
DOĞRUSAL DİNAMİK UÇAK MODELİNİN DOMİNANT PARAMETRELERİNİN 

TAHMİN EDİLMESİ 
 

Mehmet ŞAHİN 
 

İstanbul Ticaret Üniversitesi 
Fen Bilimleri Enstitüsü 

Mekatronik Mühendiliği Anabilim Dalı 
 

Danışman: Prof. Dr. Muammer KALYON 
2021, 101 sayfa 

 
 

Bir sistemin davranışlarının incelenebilmesi için matematiksel modelinin 
çıkarılması gerekmektedir. Matematiksel modelin de çıkarılabilmesi için sistem 
tanımlama metodlarına ihtiyaç duyulur. Böylece sistem tanımlama işlemi ile belli 
giriş ve çıkışı olan sistemlerin matematiksel modelleri tanımlanmaktadır. 
 
Bu çalışmada, bir hava aracının davranışları neticesinde oluşan transfer 
fonksiyonlarının sistem tanımlama metodları ile MATLAB/Simulink 
programında analizleri yapılmıştır.  
 
Sistem tanımlama yöntemi olarak parametre tahmin metodları kullanılmış ve 
metodlar arasında kıyaslar gerçekleştirilmiştir ve doğru sonuçlara ulaşılmaya 
çalışılmıştır. 
 
Havacılıkta kullanılan parametre metodları daha doğru sonuç vermesi açısından 
genelde gerçek zamanlı paramtre tahmini yapan metodlardır. Bunların başında 
da bu tezde genel olarak üzerinde durulan özyineli en küçük kareler metodudur. 
Ayrıca gerçek zamanlı olarak kullanılmayan metod olan en küçük kareler metodu 
da detaylı şekilde anlatılmıştır. 
 
Yapılan çalışmalarda özyineli en küçük kareler metodunun daha doğru sonuçlar 
verdiğinin ispatlanması için hem özyineli en küçük kareler hem de en küçük 
kareler ile yapılan analizler kıyaslanarak incelenmiş ve hata oranını 
gözlemleyebilmek için ISE (Integral Square Error) tablosu çıkarılmıştır. Böylece 
özyineli en küçük kareler metodunun başarısı görülmüş ve daha gerçeğe yakın 
sonuçlar verdiği anlaşılmıştır. 
 
Anahtar Kelimeler: Aerodinamik parametreler, en küçük kareler metodu, 
özyineli en küçük kareler metodu,  sistem tanımlama, uçak kontrol yüzeyleri.  
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1. INTRODUCTION 

 

Systems are structures based on observation or certain measurements, where 

there is an input or effect, and that generate an output or response according to 

input or effect. In Figure 1.1 shows the general structure of the system. Thus, the 

concept of system definition is defined as revealing systems and developing 

mathematical models for these systems. That is, system identification is the 

creation of a mathematical model as a result of measurements of input and output 

signals. In other words, system identification is a discipline that provides the 

most appropriate representation for a system and responds to the reverse 

problem when system behavior is examined as a result of many observations 

(Jategaonkar, 2006). The inverse problem, namely system identification, has 

been an essential element of identifying any system under consideration and 

having the knowledge to examine that system. 

 

 
 

Figure 1.1. System definiton 
 

Aviation is one of the areas where system identification is used most widely and 

effectively. Generally, system identification is used for multiple applications such 

as flight analysis, flight control design, estimation of equations and parameters 

resulting from flight behavior, and verification of experimental data. We 

described the system in the previous paragraph. Accordingly, it is a system with 

entries and exits in the aircraft. performs the closest mathematical modeling job 

to this system in system identification. As a result of the collected experimental 

results, more than one data is processed and the functions that will occur for the 

analysis of the aircraft's behavior are defined. 

 

In this thesis, various methods are mentioned to create mathematical models of 

systems. First, the system identification tool of the MATLAB/Simulink program 

was explained and the result of an aircraft on the equation of motion was 
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examined. Then, parameter estimation methods, which are the main mentality of 

the study, are explained. Figure 1.2 shows the creation of a system model with a 

general aircraft system and parameter estimation algorithm. 

 

 
 

Figure 1.2. System model and parameter estimaiton algorithm 
 

RLS method, which is one of the parameter estimation methods, is emphasized. 

Since the RLS method is a real time parameter estimation method, it is widely 

used in the aviation field in order to give more accurate results than other 

methods. For this reason, to show the effectiveness of the RLS method, analyzes 

were made on an aircraft with the LS method, which is a non-real-time parameter 

estimation method. In this context, the behavior functions resulting from the 

behavior of the aircraft control surfaces were extracted. These functions were 

examined with both LS and RLS and their comparisons were analyzed in 

MATLAB/Simulink program and the parameter estimation, which is the system 

definition, which generally expresses the essence of the study, was performed. In 

addition, pole zero maps were created in order to give information about the 

examined transfer functions and system. After the transfer functions were 

analyzed and estimated by both methods, some dominant aerodynamic 

parameters involved in the formation of these transfer functions were also 

estimated. 
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2. LITERATURE REVIEW 

 

Evans (2001), explained various system identification techniques used in 

modeling dynamic equations of aircraft gas turbine engines. have used more than 

one system ide ntification technique in their studies. They tried to explain the 

dynamic model of gas turbine engines used in aircraft with methods such as 

frequency identification method and least square method. 

 

DeBusk et al. (2009), described the real-time definition of the dynamic model of 

an aircraft with instantaneous data received during flight. used the recursive FTR 

method to estimate the parameters of the dynamic model of an aircraft. They 

defined the FTR method in the frequency domain as an extension of the LS 

method and expressed the algorithm of the LS parameter estimation method. 

 

Kamali et al. (2011), explained the analysis, evaluation and results of the RLS 

method, which is the parameter estimation method used in flight control and 

testing and in real-time applications. In their studies, they stated that online 

prediction algorithms are necessary for the reproducible flight control 

mechanism and that they come to the fore because of more efficient results in test 

processes. They described various parameter estimation algorithms and made 

comparisons on stabilized version of DFT and RLS method. They stated that the 

RLS method was more effective in dense and repetitive calculations and they 

made the estimation of an aircraft parameters by methods. 

 

Scheper et al. (2013), made a system identification study to obtain a 

mathematical model of a fixed wing aircraft. In their work, they explained the 

aerodynamically model of the aircraft and the data acquisition to be used in 

system identification studies. Subsequently, they used the output error method, 

the maximum likelihood parameter approximation method, to estimate the 

model parameters. 

 

Grauer and Morelli (2016), made the estimation of unknown parameters to 

create a mathematical model from the measured data for an aircraft using the RLS 
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method, one of the parameter estimation methods used in the aviation field. They 

also explained the LS method along with the RLS method in their work. They 

stated that the LS method is widely used in terms of simplicity and efficiency and 

firstly explained the algorithm of the LS method. They stated that LS method is 

used for parameter estimation after all data collection processes are completed, 

that is, after data is collected. Later on, they gave the algorithm of the RLS method 

due to the fact that the aircraft is also a dynamic system due to this reason and 

they explained that real-time parameter estimation can be made while collecting 

flight test data. 

 

Qadri et al. (2016),  explained the LS and RLS parameter estimation methods and 

the study of estimating the mathematical model of a waraircraft due to its 

complex and unpredictable motions. presented the calculation of aerodynamic 

parameters using both methods in their work. They firstly explained the 

dynamics, coordinate system and equation of motion of the waraircraft. 

Subsequently, they explained prediction algorithms, LS and RLS methods. 

 

Hardier et al. (2016), followed the model parameters of the aircraft with the RLS 

method in terms of designing the flight control of a civil aircraft. In their studies, 

they worked in the frequency domain to monitor parameters that change over 

time and expressed the expressions in the frequency domain recursively. 

 

Cetin (2018), explained the analysis of data collected with a flight simulation 

program for aircraft system modeling. made use of the system identification 

techniques used in the flow of time. The models obtained by the system 

identification method were compared with the data obtained from the simulation 

program and the accuracy of the model formed as a result of the system 

identification was observed.  

 

Simmons (2018), explained the development of a flight dynamic model for a fixed 

wing unmanned aerial vehicle using the system identification technique. He 

explained that he uses various parameter estimation methods and the data 

collection system he uses to collect data before the stage of system identification. 
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Grauer and Boucher (2020), explained from measured input and output data to 

flight dynamic models and estimation of parameters in the model. They utilized 

the frequency domain approach in their studies and estimated the parameters 

using the maximum likelihood method. 
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3. MATHEMATICAL MODEL OF AN AIRCRAFT 
 

Aircraft is a driven system that can move and rise while holding it in the air, with 

the help of air flow creating pressure under the wings. The main parts of the 

aircraft are the wings that keep the wings in the air, the tail to keep the wings in 

balance, the control surfaces that change the position and position of the aircraft, 

and the engine and propeller that provide the necessary propulsion. We need a 

mathematical model of the aircraft to be able to control the behavior that occurs 

as a result of all changes of these elements on the aircraft, and to model and 

observe the results. Hence, we need to know the mathematical models of aircraft 

so that we can examine and interpret the behavior of aircraft, so that we can 

control and model them. 

   

The aircraft mathematical model becomes straightforward when the equations 

that make the aircraft move are understood. The equations that drive the 

airaircraft can be derived mainly from the laws of kinetics and kinematics. 

 

The first step in developing a 6 DoF (degree of freedom) nonlinear model for an 

aircraft is to develop the mathematical model that describes the aircraft 

dynamics and environment. The mathematical model consists of the 

development and explanation of aircraft motion equations (dynamic model) and 

aerodynamic force and moment equations. The following sections describe these 

equations. In Figure 3.1, the forces and angles that we will encounter while 

explaining the mathematical model of the aircraft are shown. In Figure 3.1, the 

equations that we will explain for the mathematical model of the aircraft, and the 

forces and angles that will appear. The mathematical model of the aircraft was 

constructed based on the book “Aircraft Control and Simulation” by Stevens, 

Lewis and Johnson (Stevens, et al. 2016) and “Aircraft System Identification: 

Theory and Practise” by Klein and Morielli (Klein and Morielli, 2006). 
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Figure 3.1. Aircraft freebody diagram (McLean, 1990) 
 

3.1. Definition of Aircraft State Space Vectors 

 

In this section, the equations of motion of a rigid aircraft are tried to be derived 

and expressed in state-space form: 

 

𝑋̇ = 𝑓(𝑋,𝑈)                              

 

𝑋 is the (𝑛 𝑥 1) state vector, U is the (𝑚 𝑥 1), and f is a vector- valued nonlinear 

function of the individual states and controls. This vector equation characterized 

the 𝑛 first order, coupled simple differential equations. 

 

Ẋ1 = 𝑓1(𝑋1, 𝑋2, … . , 𝑋𝑛, 𝑈1, … . , 𝑈𝑚) 

.                                                                                                                                              

. 

Ẋn = 𝑓𝑛(𝑋1, 𝑋2, … . , 𝑋𝑛, 𝑈1, … . , 𝑈𝑚) 

                                                                                       

Where the 𝑓𝑖  symbolize different nonlinear functions of the 𝑛 state variables, 𝑋𝑖, 

and 𝑚  inputs, 𝑈𝑖  After defining the state equation, an output equation of the 

general form is defined.   

 

𝑌 = 𝑔(𝑋, 𝑈)                                                                                                                        
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where  𝑌 is a (𝑝𝑥1) output vector and g represents a set of nonlinear equations 

similar to 𝑓. The state variables, 𝑋𝑖, will be any set of variables that completely 

define the state. 

 

Large symbols will be used for state, control, and output vectors and variables 

derived from them. because at this stage it will show the actual values of the 

aircraft variables.  

 

𝑋̇ = 𝐴𝑥 + 𝐵𝑢                                                                                                                     

 

In this expression, the reason why the state and control vectors are expressed in 

lowercase indicates that they are perturbations from the equilibrium from 

equilibrium. As stated in the expression, the "A-matrix" is the square matrix in the 

state space form, and the "B-matrix" has the size determined by the number of 

states and controls. 

                                                                

The aircraft velocity, position, force and moment, actuator control input state 

space vectors are explained according to the logic of expressing the space state 

vectors in the following sections. 

 

3.1.1.  Vector of aircraft velocity 
 

Parameters are defined by forming a aircraft velocity vector. Firstly, the aircraft 

velocity vector was constructed in order to derive the equations of motion. The 

meanings of the parameters were specified according to the motion of the aircraft 

to be used in the explanation of the dynamic equations of the aircraft. Velocity 

vector of the aircraft is depicted in (3.1). 

 

[
 
 
 
 
 
𝑢
𝑣
𝑤
𝑝
𝑞
𝑟 ]
 
 
 
 
 

 = 

[
 
 
 
 
 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑜𝑙𝑙 𝑚𝑜𝑡𝑖𝑜𝑛
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑖𝑡𝑐ℎ 𝑚𝑜𝑡𝑖𝑜𝑛
𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑜𝑙𝑙 𝑚𝑜𝑡𝑖𝑜𝑛 ]

 
 
 
 
 

                                                                  (3.1) 
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3.1.2.  Vector of aircraft position 
 

This section describes the position vector of the state space form of the aircraft.  

For aircraft it is common to use the following body-fixed coordinate systems: 

 

 Body axes 

 Stability axes 

 Wind axes 

 

In Figure 3.2 and Figure 3.3 shown the axis system of the aircraft. In Figure 3.3, 𝛼 

is the angle of attack and 𝛽 is the side slip angle.  

 

 
 

Figure 3.2. Body axis system 
 

 
 

Figure 3.3. Stability and wind axes (Stevens and Lewis, 1992) 
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The angle of attack and the side slip angle are expressed by the velocity vectors  

described in the previous section and given in (3.2) and (3.3) respectively. 

 

tan α =
𝑤

𝑢
                                                                                                                           (3.2) 

sin 𝛽 =
𝑣

V  
                                                                                                                           (3.3) 

 

Coordinates axes and Euler angles are also defined in (3.4). 

 

[
 
 
 
 
 
𝑋𝑒
𝑌𝑒
𝑍𝑒
𝛷
𝜃
𝜓 ]

 
 
 
 
 

 = 

[
 
 
 
 
 
𝑒𝑎𝑟𝑡ℎ 𝑓𝑖𝑥𝑒𝑑 𝑥 𝑎𝑥𝑖𝑠
𝑒𝑎𝑟𝑡ℎ 𝑓𝑖𝑥𝑒𝑑 𝑦 𝑎𝑥𝑖𝑠
𝑒𝑎𝑟𝑡ℎ 𝑓𝑖𝑥𝑒𝑑 𝑧 𝑎𝑥𝑖𝑠

𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑟𝑜𝑙𝑙 
𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑝𝑖𝑡𝑐ℎ
𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑟𝑜𝑙𝑙 ]

 
 
 
 
 

                                                                                             (3.4) 

 

3.1.3. Vector of forces and moments 
 

In this section, the aircraft force and moment vectors are expressed in (3.5). 

 

[
 
 
 
 
 
𝑋
𝑌
𝑍
𝐿
𝑀
𝑁]

 
 
 
 
 

 = 

[
 
 
 
 
 
𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑓𝑜𝑟𝑐𝑒 𝑖𝑛 𝑣𝑒𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
𝑚𝑜𝑚𝑒𝑛𝑡 𝑖𝑛 𝑟𝑜𝑙𝑙𝑖𝑛𝑔
𝑚𝑜𝑚𝑒𝑛𝑡 𝑖𝑛 𝑝𝑖𝑡𝑐ℎ𝑖𝑛𝑔
𝑚𝑜𝑚𝑒𝑛𝑡 𝑖𝑛 𝑦𝑎𝑤𝑖𝑛𝑔 ]

 
 
 
 
 

                                                                   (3.5) 

 

In Figure 3.4 shown the force and moment axes on the aircraft. 

 

 
 

Figure 3.4. The moments and forces vectors 
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3.1.4.  Vector of actuator control input to aircraft 
 

In this section, the vector expression of the actuators given in (3.6) that could 

control on the aircraft is explained.  

 

[
 
 
 
 
𝛿𝑇

𝛿𝐴

𝛿𝐸

𝛿𝐹

𝛿𝑅]
 
 
 
 

 = 

[
 
 
 
 

𝑡ℎ𝑟𝑢𝑠𝑡
𝑎𝑖𝑙𝑒𝑟𝑜𝑛
𝑒𝑙𝑒𝑣𝑎𝑡𝑜𝑟

𝑓𝑙𝑎𝑝
𝑟𝑢𝑑𝑑𝑒𝑟 ]

 
 
 
 

                                                                                                                 (3.6) 

 

In Figure 3.5 and Figure 3.6 shows these actuators on the aircraft. 

 

 
 

Figure 3.5. Conventional aircraft (McLean, 1990) 
 

 
 

Figure 3.6. A proposed control configured vehicle (McLean, 1990) 
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3.2. Rigid Body Equation of Motion 

 

Assuming the aircraft is a rigid body moving through space, it can be thought of 

as having six degrees of freedom in motion. By applying Newton's Second Law to 

this rigid body, equations of motion can be established in terms of translation and 

angular accelerations that occur as a result of some forces and moments applied 

to the aircraft.    

  

In this section, kinematic equations of translation and rotation motion are 

obtained. Before obtaining the equations of translation and rotational motions, 

the second law of Newton was mentioned in (3.7) and (3.8). 

 

𝐹 =
𝑑

𝑑𝑡
(𝑚𝑉)                                                                                                                          (3.7) 

𝑀 =
𝑑

𝑑𝑡
(𝐼𝜔)                                                                                                                           (3.8) 

 

where 𝐹  is the force, 𝑚𝑉  is the linear momentum, 𝑚  is the mass, 𝑉  is the 

translational velocity, 𝑀  is the moment, 𝐼𝜔 is the angular momentum, 𝜔  is the 

angular velocity, and 𝐼 is the inertia matrix. In (3.7) and (3.8) are vector equations 

describing translation and rotational motion. Each vector Equation expresses 

three scalar equations for vector components. Thus, six scalar Equations are 

formed for six degrees of freedom for aircraft motion. Below, the body axis 

components of the force, velocity, moment and angular velocity expressions in 

(3.7) and (3.8) are specified in 𝐹 = [𝐹𝑥 𝐹𝑦 𝐹𝑧]𝑇 , 𝑉 = [𝑢 𝑣 𝑤]𝑇 , 𝑀 =

[𝑀𝑥 𝑀𝑦 𝑀𝑧]𝑇, 𝜔 = [𝑝 𝑞 𝑟]𝑇.         

 

Therefore, the angular momentum expression is specified in (3.9) to be used in 
finding moment Equations. 
 

𝐼𝜔 =  [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑦𝑥 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑥𝑧 −𝐼𝑦𝑧 𝐼𝑧𝑧

] [
𝑝
𝑞
𝑟
] → 𝐼𝜔 =  [

𝐼𝑥𝑝 − 𝐼𝑥𝑧𝑟
𝐼𝑦𝑞

−𝐼𝑥𝑧𝑝 + 𝐼𝑧𝑟
]                                           (3.9) 

   

The inertia matrix 𝐼  symmetric matrix showed in (3.9) and where 𝐼𝑥𝑦 = 𝐼𝑦𝑥 =

𝐼𝑦𝑧 = 𝐼𝑧𝑦 = 0. So inertia matrix becomes like in Equation (3.10) as below. 
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𝐼 =  [
𝐼𝑥𝑥 0 −𝐼𝑥𝑧
0 𝐼𝑦𝑦 0

−𝐼𝑥𝑧 0 𝐼𝑧𝑧
]                                                                                                   (3.10) 

 

For rotating axis system such as body axes, the derivative operator applied to 

vectors describes the rate of change of vector components expressed in the 

rotating system and the axis system rotation. This expression is explained in 

Equation (3.11). 

 

𝑑

𝑑𝑡
(. ) =

𝛿

𝛿𝑡
(. ) + 𝜔 × (. )                                                                                                  (3.11) 

 

In Equations (3.12) and (3.13) are formed by combining Equations (3.7) and 

(3.8). These equations are vector forms of the equations of motion expressed on 

the body axis.  

 

𝐹 = 𝑚𝑉̇ + 𝜔 × 𝑚𝑉                                                                                                        (3.12)                 

𝑀 = 𝐼𝜔̇ + 𝜔 × 𝐼𝜔                                                                                                             (3.13)       

           

The components of the force and moment equations in Equations (3.14) and 

(3.15) are found when the body axis components of Equation (3.9) and the body 

axis components are put into Equation (3.12) and (3.13) within the framework of 

the expressions in Equation (3.2-1) and (3.2-2) explanined above. 

 

Force Equations: 
 

𝐹𝑥 = 𝑚(𝑢̇ + 𝑞𝑤 − 𝑟𝑣) 

𝐹𝑦 = 𝑚(𝑣̇ + 𝑟𝑢 − 𝑝𝑤)                                                                                                     (3.14) 

𝐹𝑧 = 𝑚(𝑤̇ + 𝑝𝑣 − 𝑞𝑢) 

 

Moment Equations: 

 

𝑀𝑥 = 𝑝̇𝐼𝑥 − 𝑟̇𝐼𝑥𝑧 + 𝑞𝑟(𝐼𝑧 − 𝐼𝑦) − 𝑞𝑝𝐼𝑥𝑧 

𝑀𝑦 = 𝑞̇𝐼𝑦 + 𝑝𝑟(𝐼𝑥 − 𝐼𝑧) + (𝑝2 − 𝑟2)𝐼𝑥𝑧                                                                                  (3.15) 
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𝑀𝑧 = 𝑟̇𝐼𝑧 + 𝑝̇𝐼𝑥𝑧 + 𝑝𝑞(𝐼𝑦 − 𝐼𝑥) + 𝑞𝑟𝐼𝑥𝑧 

 

In Figure 3.8 shows aerodynamic forces and moments on the aircraft. 

 

 
 

Figure 3.7. Definition of aerodynamic forces and moments 
 

For aircrafts, the forces and moments applied to the left sides of the above 

equations are caused by aerodynamics, gravity and thrust. Since gravity moves 

approximately and the gravitational field is assumed to be uniform, there is no 

gravitational moment acting on the aircraft. Because of this reason, Equations 

(3.12) and (3.13) are expressed in equations (3.16) and (3.17) as follows. 

 

𝐹𝐴 + 𝐹𝑇 + 𝐹𝐺 = 𝑚𝑉̇ + 𝜔 × 𝑚𝑉                                                                                     (3.16) 

 

𝑀𝐴 + 𝑀𝑇 = 𝐼𝜔̇ + 𝜔 × 𝐼𝜔                                                                                                           (3.17) 

 

The aerodynamic forces and moments affecting the airaircraft result from the 

relative motion of the air and the aircrafts. Components of aerodynamic forces 

and moments can be expressed in terms of dimensionless coefficients as in 

equations (3.18) and (3.19). 

 

𝐹𝐴 = 𝑞̅𝑆 [

𝐶𝑥

𝐶𝑦

𝐶𝑧

]                                                                                                                                   (3.18) 
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𝑀𝐴 = 𝑞̅𝑆 [

𝑏𝐶𝑙

𝑐𝐶𝑚

𝑏𝐶𝑛

]                                                                                                                               (3.19) 

 

where  𝑞̅ = 0.5𝜌𝑉2  is the dynamic pressure, 𝑉  is the airspeed (air relative 

volocity), 𝜌 is the air density, 𝑆 is the wing area, 𝑏 is the wing span, and 𝑐 is the 

mean aerodynamic chord length of the wing. 

 

In general, the dimensionless aerodynamic force and moment coefficients are 

nonlinearly dependent on aircrafts translation and angular velocity vector 

components and control surface deviations and their time derivatives and/or 

other dimensionless quantities such as the Mach number and Reynolds number. 

  

Aircrafts weight is considered constant in both magnitude and direction relative 

to earth axes, with 𝑂𝑍𝐸
 moving along the earth axis. The components of the 

aircraft weight along the fuselage axes change with the orientation of the aircraft 

to the earth axis. The components of the aircraft weight along the fuselage axes 

change with the orientation of the aircraft to the earth axis. The gravitational 

components in the body axes are therefore dependent on the aircraft orientation 

with respect to the earth axis and can be defined based on the orientation of the 

body axes relative to the vehicle-carried earth axes. The most common way to 

explain aircraft orientation with respect to vehicle-carried body axes is to use 

Euler angles. 

 

As shown in Figure 3.8, it is stated how the direction of a right-handed coordinate 

system can be defined relative to the other. The sequence of rotating the axis of 

Earth carried by the vehicle so that it is aligned with the body axis is completed 

by a yaw angle rotation 𝜓 about the axis 𝑂𝑍𝑉
 , followed by an angle of inclination 

rotation 𝜃, around the axis y, a roll angle rotation 𝜙 around the body axis 𝑂𝑥. 
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Figure 3.8. Rotation earth axes to body axes (Klein and Morielli, 2006) 

 

The components of the gravity vector in body axes are found through the product 

of rotation matrices. As stated below, the components of the gravity vector in 

Equation (3.20) are obtained as a result of matrix multiplications. 

 

𝐹𝐺 = [

𝑔𝑥

𝑔𝑦

𝑔𝑧

]

𝐵

= [

1 0 0
0 𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
1 −𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

] [
𝑐𝑜𝑠𝜃 0 −𝑠𝑖𝑛𝜃

0 1 0
𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

] [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0
−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0 0 1

] [
0
0
𝑔
]

𝑉

= [

−𝑔𝑠𝑖𝑛𝜃
𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

] 

 

Additionally,  

 

𝐹𝐺 = 𝑚[

𝑔𝑥

𝑔𝑦

𝑔𝑧

]

𝐵

= [

−𝑚𝑔𝑠𝑖𝑛𝜃
𝑚𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙
𝑚𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙

]                                                                                            (3.20) 

 

Assuming that the thrust from the propulsion system moves along the x-body 

axis, the thrust appears only as a force exerted along the x-body axis and is 

expressed as in Equation (3.21). 

 

𝐹𝑇 = [
𝑇
0
0
]                                                                                                                              (3.21) 

 

Sometimes it may be necessary to take into account the effect of rotating mass in 

the propulsion system, such as the propellers or rotors of jet engines. Gyroscopic 

terms associated with rotating mass are considered as applied moment because 
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the equations of motion were formulated assuming that the aircraft is a rigid body 

with no moving parts. 

 

The angular momentum of the rotating mass in the body axes is expressed as in 

Equation (3.22) as follows. 

 

ℎ𝑝 = [
𝐼𝑝𝛺𝑝

0
0

]                                                                                                                        (3.22) 

 

Where  𝐼𝑝 is the inertia of the rotating mass and  𝛺𝑝 is the angular velocity. Thus 

𝑀𝑇  is expressed as in Equation (3.23) as follows. 

 

𝑀𝑇 =
𝑑

𝑑𝑡
(ℎ𝑝) = 𝜔 × ℎ𝑝 = [

0 −𝑟 𝑞
𝑟 0 −𝑝

−𝑞 𝑝 0
] [

𝐼𝑝𝛺𝑝

0
0

] = [

0
𝐼𝑝𝛺𝑝𝑟

−𝐼𝑝𝛺𝑝𝑞
]                         (3.23) 

 

As a result, by using the expressions above, the force and moment equations are 

obtained as in Equations (3.24) and (3.25) as follows. 

 

Force Equations: 
 

𝑚𝑢̇ = 𝑚(𝑟𝑣 − 𝑞𝑤) + 𝑞̅𝑆𝐶𝑥 − 𝑚𝑔𝑠𝑖𝑛𝜃 + 𝑇 

𝑚𝑣̇ = 𝑚(𝑝𝑤 − 𝑟𝑢) + 𝑞̅𝑆𝐶𝑦 + 𝑚𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙                                                             (3.24) 

𝑚𝑤̇ = 𝑚(𝑞𝑢 − 𝑝𝑣) + 𝑞̅𝑆𝐶𝑧 + 𝑚𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 

 

Moment Equations:  

 

𝑝̇𝐼𝑥 − 𝑟̇𝐼𝑥𝑧 = 𝑞̅𝑆𝑏𝐶𝑙 − 𝑞𝑟(𝐼𝑧 − 𝐼𝑦) + 𝑞𝑝𝐼𝑥𝑧 

𝑞̇𝐼𝑦 = 𝑞̅𝑆𝑐𝐶𝑚 − 𝑝𝑟(𝐼𝑥 − 𝐼𝑧) − (𝑝2 − 𝑟2)𝐼𝑥𝑧 + 𝐼𝑝𝛺𝑝𝑟                                              (3.25) 

𝑟̇𝐼𝑧 − 𝑝̇𝐼𝑥𝑧 = 𝑞̅𝑆𝑏𝐶𝑛 − 𝑝𝑞(𝐼𝑦 − 𝐼𝑥) − 𝑞𝑟𝐼𝑥𝑧 − 𝐼𝑝𝛺𝑝𝑞 
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3.3. Rotational Kinematic Equation  

 

Rotational kinematic equations are expressed in terms of the rate of change of 

Euler angles and the body axis components of angular velocity. Below is given in 

Equation (3.26). 

 

[
𝑝
𝑞
𝑟
]= [

1 0 −sinθ
0 cosΦ sinΦ𝑐𝑜𝑠θ
0 −sinΦ 𝑐𝑜𝑠Φc𝑜𝑠θ

] [
Φ̇
𝜃̇
𝜓̇

]                                                                              (3.26) 

 

By inverting the expression in Equation (3.26), the Euler angles in Equation 

(3.27) are found. 

 

Φ̇ = 𝑝 + 𝑡𝑎𝑛𝜃(𝑞𝑠𝑖𝑛𝛷 + 𝑟𝑐𝑜𝑠𝛷) 

𝜃̇ = 𝑞𝑐𝑜𝑠𝛷 − 𝑟𝑠𝑖𝑛𝛷                                                                                                         (3.27) 

𝜓̇ =
𝑞𝑠𝑖𝑛𝛷 + 𝑟𝑐𝑜𝑠𝛷

𝑐𝑜𝑠𝜃
 

 

3.4. Navigation Equation 

 

By expressing the aircraft velocity vector in the earth axes starting from the body 

axis components, the navigation equations are written as in Equation (3.28) as 

follows. The components are explained separately as in Equation (3.29), (3.30) 

and (3.31). 

 

[
𝑥̇𝐸

𝑦̇𝐸

𝑧̇𝐸

] = [
1 0 0
0 cosΦ sinΦ
0 −sinΦ 𝑐𝑜𝑠Φ

] [
cosθ 0 −sinθ
0 1 0

sinθ 0 c𝑜𝑠θ
] [

cos𝜓 𝑠𝑖𝑛𝜓 0
−𝑠𝑖𝑛𝜓 cos𝜓 0

0 0 1

] [
𝑢
𝑣
𝑤

]        (3.28) 

 

Therefore, 

 

𝑥̇𝐸 = 𝑢cos𝜓c𝑜𝑠θ + v(cos𝜓sinθsinΦ − 𝑠𝑖𝑛𝜓cosΦ) + w(cos𝜓sinθ𝑐𝑜𝑠Φ + sin𝜓sinΦ)          (3.29) 
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 𝑥̇𝐸 = 𝑢sin𝜓c𝑜𝑠θ + v(sin𝜓sinθsinΦ + 𝑐𝑜𝑠𝜓cosΦ) + w(sin𝜓sinθ𝑐𝑜𝑠Φ − cos𝜓sinΦ)          (3.30) 

 

ḣ = 𝑢sinθ − v𝑐𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛷 − wcosθ𝑐𝑜𝑠𝛷              (3.31) 

 

where 

 

h = altitude = −zE 

 

3.5. Force Equations in Wind Axes 

 

The total velocity of the aircraft (𝑽) was found in the previous sections is in the 

direction of the wind axis. To find the relationship between the fuselage axis and 

the wind axis, rotate the fuselage pivot system around the z-axis by a negative 

side slip angle unit (𝜷); The resulting new coordinate system is then rotated by a 

positive angle of attack (𝜶) around the new y-axis. In Figure 3.7, the rotation 

angles on the aircraft are specified. 

 

 
 

Figure 3.9. Definition of aerodynamic angles (Klein and Morielli, 2006) 
 

The rotation matrix was specified in (3.32) to express the velocity vectors of the 

aircraft to the specified angle of attack (𝜶) and side slip angles (𝜷). 

 

𝑅𝑏𝑜𝑑𝑦
𝑤𝑖𝑛𝑑 = [

𝑐𝑜𝑠𝛽 𝑐𝑜𝑠α 𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽𝑠𝑖𝑛α
−𝑠𝑖𝑛𝛽𝑐𝑜𝑠α 𝑐𝑜𝑠𝛽 −𝑠𝑖𝑛𝛽𝑠𝑖𝑛α

−𝑠𝑖𝑛α 0 𝑐𝑜𝑠α

]                                                               (3.32) 
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Thus, velocity of the aircraft in body axis system is defined in (3.33) and (3.34). 

𝑉𝑏𝑜𝑑𝑦 = 𝑅𝑏𝑜𝑑𝑦
𝑤𝑖𝑛𝑑𝑇

𝑉𝑤𝑖𝑛𝑑                                                                                                      (3.33) 

 

[
u
v
w

] = [

𝑉cos (𝛽)cos (𝛼)
𝑉sin(𝛽)

𝑉sin(𝛽)sin (𝛼)
]                                                                                                 (3.34) 

 

If the values of 𝛼 and 𝛽 are small enough such that  𝑐𝑜𝑠𝛼 = 1 and 𝑠𝑖𝑛𝛽 = 𝛽, the 

expression in (3.35) is obtained from Equation (3.34). 

 

u = 𝑉 

𝛼 = tan−1 𝑤

𝑢
                                                                                                                        (3.35)                                                                                    

𝛽 = sin−1 𝑣

𝑉
               

                                                                                                                     

𝑉 is the airspeed and it is expressed in Equation (3.36). 

 

𝑉 = √𝑢2 + 𝑣2 + 𝑤2                                                                                             (3.36)                                                                        

 

So, differentiating Eqaution (3.35) and (3.36) with respect to time gives in 

Equation (3.37) – (3.39). 

    

𝑉̇ =
1

𝑉
(𝑢𝑢̇ + 𝑣𝑣̇ + 𝑤𝑤̇)                                                                                                   (3.37)         

𝛼̇ =
𝑢𝑤̇−𝑤𝑢̇

𝑢2+𝑤2
                                                                                                                          (3.38) 

𝛽̇ =
𝑉𝑣̇ − 𝑣𝑉̇

𝑉2

[
 
 
 

1

√1 − (
𝑣
𝑉)

2

]
 
 
 

= [
𝑉𝑣̇ − 𝑣𝑉̇

𝑉√𝑢2 + 𝑤2
] 

    =
(𝑢2+𝑣2+𝑤2)𝑣̇−𝑣(𝑢𝑢̇+𝑣𝑣̇+𝑤𝑤̇)

𝑉2√𝑢2+𝑤2
                                                                                        (3.39) 

    =
(𝑢2+𝑤2)𝑣̇−𝑣(𝑢𝑢̇+𝑤𝑤̇)

𝑉2√𝑢2+𝑤2
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3.6. The Linarized Equations of Motion  

 

The aircraft motion equations were derived above to be used in future studies. 

These equations need to be linearized so that they can be analyzed and examined 

comfortably in the sections to be explained later. For this reason, in this section, 

the equations of motion resulting from both the longitudinal and lateral sides of 

the aircraft are linearized since they are rather nonlinear. Highly nonlinear 

equations are linearized in order to easily analyze the mathematical explanations 

resulting from aircraft motion equations and behaviors (Howe, 1980). The 

purpose of linearization is that the least squares method, which will be explained 

later, can be applied easily on the equations formed as a result of the behavior of 

the aircraft control surfaces. Here, linearized equations have been derived. 

 

3.6.1. The linarized longitudinal equations  
 

First of all, the states used in longitudinal motion equations are determined in 

order to perform linearization. States of the longitudinal motions that are aircraft 

velocity (𝑣𝑝), angular velocity pitch component (𝑞), pitch angle (𝜃) and angle of 

attack (𝛼). The equilibrium points of states are 𝑣𝑝 = 𝑣𝑝0, 𝛼 = 𝛼0 = 0, 𝜃 = 𝜃0 = 0 

and 𝑞 = 0. After determining the states and equilibrium points for longitudinal 

motion, linearization of the longitudinal motion equations between Equation 

(3.40) and (3.43) is given below. 

 

𝑉𝑝̇ =
−2𝑔(𝐶𝐷0

+𝐶𝐷
𝐶𝐿2

𝐶𝐿0
2)

𝑉𝑝0
𝐶𝐿

𝑉𝑝 + 𝑔 (1 − 2𝐶𝐷
𝐶𝐿2

𝐶𝐿0

𝐶𝐿
𝐶𝐿𝛼

+
𝑃𝑧

𝑚
)𝛼 − 𝑔𝜃                                   (3.40) 

 

𝛼̇ =
−𝑔

𝑉𝑝0
2 (1 +

𝐶𝐿0

𝐶𝐿
+

𝑃𝑧

𝑚𝑔
) 𝑉𝑝 − (

𝑔

𝑉𝑝0

𝐶𝐿𝛼

𝐶𝐿
+

𝑃𝑥

𝑚𝑉𝑝0

) 𝛼 −
𝑔

𝑉𝑝0

𝐶𝐿𝛿𝑒

𝐶𝐿
𝛿𝑒 + 𝑞                                  (3.41)   

 

𝑞̇ =
2𝑚𝑔𝑐𝐶𝑀0

𝐼𝑦𝑦𝑉𝑝0
𝐶𝐿

𝑉𝑝 +
𝑚𝑔𝑐𝐶𝑀𝛼

𝐼𝑦𝑦𝐶𝐿
𝛼 +

𝑚𝑔𝑐2𝐶𝑀𝛼̇

2𝐼𝑦𝑦𝑉𝑝0
𝐶𝐿

𝛼̇ +
𝑚𝑔𝑐2𝐶𝑀𝑄

2𝐼𝑦𝑦𝑉𝑝0
𝐶𝐿

𝑞 +
𝑚𝑔𝑐𝐶𝑀𝛿𝑒

𝐼𝑦𝑦𝐶𝐿
𝛿𝑒                              (3.42)   

 

𝜃 ̇ = 𝑞                                                                                                                                                (3.43)   
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Equations between (3.40) - (3.43) can be stated as form of vector notation in 

Equation (3.44)  as follows. Representation of 𝐴, 𝐵  and 𝐶 matrices in vector 

notation is given in equation (3.45). 

 

𝐶𝑋̇ = 𝐴𝑋 + 𝐵𝛿𝑒 → [

1 0 0 0
0 1 0 0
0 𝑐32 1 0
0 0 0 1

] [

𝑣𝑝

𝛼
𝑞

𝜃̇

̇
̇

̇

] = [

𝑎11 𝑎12 0 −𝑔
𝑎21 𝑎22 1 0
𝑎31 𝑎32 𝑎33 0
0 0 1 0

] [

𝑣𝑝

𝛼
𝑞
𝜃

] + [

0
𝑏2

𝑏3

0

]𝛿𝑒         (3.44) 

 

where  

 

𝐶 = [

1 0 0 0
0 1 0 0
0 𝑐32 1 0
0 0 0 1

] , 𝐴 = [

𝑎11 𝑎12 0 −𝑔
𝑎21 𝑎22 1 0
𝑎31 𝑎32 𝑎33 0
0 0 1 0

] , 𝐵 = [

0
𝑏2

𝑏3

0

]                       (3.45) 

 

𝐶  is invertible matrix. Therefore, it can be move to do right hand side of the 

Equation (3.44). Therefore, The 𝐴 and 𝐵 matrices are updated in Equation (3.46). 

 

𝐴̂ = 𝐶−1𝐴 = [

𝑎11 𝑎12 0 −𝑔
𝑎21 𝑎22 1 0
𝑎̂31 𝑎̂32 𝑎̂33 0
0 0 1 0

],    𝐵̂ = 𝐶−1𝐵 = [

0
𝑏̂2

𝑏̂3

0

]                                     (3.46) 

 

Component of the 𝐴 and 𝐵 matrix detailed expressions can be obtained from the 

coefficient linearized longitudinal motion equations for 𝑣𝑝̇ , 𝛼̇ , 𝑞̇ , 𝜃̇  in Equation 

(3.40) - (3.43). Thus, the coefficients in the given matrix in Equation (3.46) are 

expressed in Equation (3.47) below with some assumptions. Some assumptions 

were made while generating the coefficients in Equation (3.47)  (Howe, 1991). 

These assumptions are set out below.  

 

- 𝑃𝑧 is neglected, the z component of powerplant force 

- 𝐶𝐿0
= 𝐶𝐿 

- 𝐶𝑀0
= 0 

- 𝐶𝐷 = 𝐶𝐷0
+ 𝐶𝐷𝐶𝐿2𝐶𝐿0

 

- 
𝑃𝑥

𝑚
=

𝑔𝐶𝐷

𝐶𝐿
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The coefficients according to these assumptions are as follows. 

 

𝑐32 = −
𝑚𝑔𝑐2𝐶𝑀𝛼̇

2𝐼𝑦𝑦𝑉𝑝0
𝐶𝐿

                                         𝑎32 =
𝑚𝑔𝑐𝐶𝑀𝛼

𝐼𝑦𝑦𝐶𝐿
 

𝑎11 = −
2𝑔𝐶𝐷

𝑉𝑝0
𝐶𝐿

                                                    𝑎33 =
𝑚𝑔𝑐2𝐶𝑀𝑄

2𝐼𝑦𝑦𝑉𝑝0𝐶𝐿
 

𝑎12 = 𝑔 (1 − 2𝐶𝐷
𝐶𝐿2𝐶𝐿𝛼

)                               𝑎43 = 1    

𝑎14 = −𝑔                                                            𝑏2 = −
𝑔

𝑉𝑝0

𝐶𝐿𝛿𝑒

𝐶𝐿
 

𝑎21 =
−2𝑔

𝑉𝑝0
2                                                           𝑏3 =

𝑚𝑔𝑐𝐶𝑀𝛿𝑒

𝐼𝑦𝑦𝐶𝐿
 

𝑎22 = −
𝑔

𝑉𝑝0

(
𝐶𝐿𝛼

𝐶𝐿
+

𝐶𝐷

𝐶𝐿
)                                    𝑎̂31 = −𝑐32𝑎21 + 𝑎31  

𝑎23 = 1                                                               𝑎̂32 = −𝑐32𝑎22 + 𝑎32 

𝑎31 = 0                                                               𝑎̂33 = −𝑐32 + 𝑎33      

                                                                              𝑏̂3 = −𝑐32𝑏2 + 𝑏3 

              (3.47) 

 

After the matrix coefficients defined above, the state equations can be rewritten 

as in Equation (3.48) - (3.51) below. 

 

𝑉𝑝̇ = 𝑎11𝑣𝑝 + 𝑎12𝛼 + 𝑎14 𝜃                                                                                            (3.48) 

𝛼̇ = 𝑎21𝑣𝑝 + 𝑎22𝛼 + 𝑞 + 𝑏2𝛿𝑒                                                                                       (3.49) 

𝑞̇ = 𝑎̂32𝛼 + 𝑎̂33𝑞 + 𝑏̂3𝛿𝑒 + 𝑎̂31𝑣𝑝                                                                               (3.50) 

𝜃 ̇ = 𝑞                                                                                                                                   (3.51) 

 

In addition, the states of (3.48) - (3.51) are expressed in the Laplace domain by 

performing the Laplace transform. 

 

In this way, the linearized longitudinal equations of motion of an airplane 

together with laplace transforms will obtain the transfer function resulting from 

the behavior of the elevator control surface. Thus, the pitch transfer function 

which is the elevator displacement ratio of the pitch angle is expressed in 

Equations (3.52) and (3.53) below.  
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𝜃

𝛿𝑒

(𝑠) =
(𝑏3 − 𝑐32𝑏2)𝑠

2 + [𝑏2(𝑐32𝑎11 + 𝑎32) − 𝑏3(𝑎11 + 𝑎22)]𝑠 + 𝑏3(𝑎11𝑎22 − 𝑎21𝑎12) − 𝑏2𝑎32𝑎11

𝐷(𝑠)
                    

(3.52) 
 

where 

 

𝐷(𝑠) = 𝑠4 + (𝑐32 − 𝑎11 − 𝑎22 − 𝑎33)𝑠
3 + [𝑎11𝑎22 − 𝑎21𝑎12 + 𝑎33(𝑎11 + 𝑎22)𝑐32𝑎11 − 𝑎32]𝑠

2

+ [𝑐32𝑎21𝑎14 + 𝑎32𝑎11 − 𝑎33(𝑎11𝑎22 − 𝑎21𝑎12)]𝑠 + 𝑎32𝑎21𝑎14 
                                                      

(3.53) 
 

In general, the pitch transfer function has been created. This function can also be 

expressed in the form in Equation (3.54) (Howe, 1980). 

 

𝜃

𝛿𝑒
(𝑠) = 𝐾𝑒

(𝜏𝑠𝑠 + 1)(𝜏𝑝𝑠 + 1)

(
1

𝑤𝑛𝑠
2 𝑠2 +

2𝜁𝑠

𝑤𝑛𝑝
2 𝑠 + 1)(

1
𝑤𝑛𝑝

2 𝑠2 +
2𝜁𝑝

𝑤𝑛𝑝
2 𝑠 + 1)

 
                                                              

(3.54) 

 

Longitudional motion of the aircraft with the short-period and phugoid 

approximations may be expressed as the transfer function form in Equation 

(3.54). Input of this transfer is elevator displacement while ouput is pitch angle. 

The transfer function we find contains two complex conjugate root pair and 

damped oscillatory transients. According to the short period approach of the first 

root aircraft, undamped natural frequency  𝑤𝑛𝑠 , damping ratio 𝜁𝑠 , 𝜏𝑠  and 

according to the second root phugoid approach, natural frequency  𝑤𝑛𝑝, damping 

ratio 𝜁𝑝 , 𝜏𝑝  and the gain of our system are revealed. These expressions are 

explained in (3.55). The definition of the symbols used for this form of this 

transfer function explained in Equation (3.54) is given in Equation (3.55). 

 

𝑤𝑛𝑝 =
√2𝑔

𝑉𝑝0
 

𝜁𝑝 =
𝐶𝐷

√2𝐶𝐿

 

𝜏𝑝 =
𝑉𝑝0𝐶𝐿

2𝑔𝐶𝐷
 

                        (3.55)      
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𝑤𝑛𝑠 = √
𝑚𝑔𝑐

𝐼𝑦𝑦
((

−𝐶𝑀𝛼

𝐶𝐿

) −
𝑔𝑐𝐶𝑀𝑄(𝐶𝐿𝛼 + 𝐶𝐷)

2𝑉𝑝0
2𝐶𝐿2

) 

𝜁𝑠 =
𝑔

2𝑤𝑛𝑠𝑉𝑝0

(
𝐶𝐿𝛼 + 𝐶𝐷

𝐶𝐿

−
𝑚𝑐2𝐶𝑀𝑄𝐶𝑀𝛼̇

2𝐼𝑦𝑦𝐶𝐿

) 

𝜏𝑠 =
𝑐

2𝑉𝑝0
(

𝐶𝑀𝛼𝐶𝐿𝛿𝑒
𝑔𝑐 − 2𝑉𝑝0

2𝐶𝑀𝛿𝑒
𝐶𝐿

𝐶𝑀𝛼𝐶𝐿𝛿𝑒
𝑔𝑐 − (𝐶𝐿𝛼𝐶𝐷

)𝐶𝑀𝛿𝑒
𝑔𝑐

) 

𝐾𝑒 = (− (
𝐶𝐷(𝐶𝐷𝛼 + 𝐶𝐷)

𝐶𝐿2
+ 1 − 2𝐶𝐷

𝐶𝐿2
𝐶𝐿𝛼)

𝐶𝑀𝛿𝑒

𝐶𝑀𝛼

+
𝐶𝐿𝛿𝑒

𝐶𝐷

𝐶𝐿2
) 

 

After obtaining the pitch transfer function from the longitudinal motion 

equations, another transfer function derived from the longitudinal motion 

equations is the ratio of the angle of attack to the elevator displacement. With this 

transfer function, analysis of the behavior of an aircraft between the angle of 

attack and the elevator displacement can be realized. While finding this transfer 

function, the Equations between (3.47) - (3.51) described above are used. The 

necessary equations are made between the Equations (3.48) - (3.51) to obtain the 

transfer operator relating angle of attack to elevator displacement in the 

following Equation (3.56). 

 

𝛼

𝛿𝑒
(𝑠) =

𝑏2𝑠
3 + [𝑏3 − 𝑏2(𝑎11 + 𝑎33)]𝑠

2 + 𝑎11(𝑏2𝑎33 − 𝑏3)𝑠 + 𝑏3𝑎21𝑎14

𝐷(𝑠)
         (3.56) 

 

where 𝐷(𝑠) as before is given by Equation (3.53). This transfer operator relating 

angle of attack to elevator displacement, extracted with the pitch transfer 

foundation, will be used in the description of the prediction methods described 

later. 
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3.6.2. The linarized lateral equations 
 

After linearizing the longitudinal motion equations, the lateral motion equations 

will be linearized in this section for the analysis of the behaviors resulting from 

the aircraft's lateral motion. Before starting linearization, states should be 

determined as with longitudinal motion. States of the lateral motions that are side 

slip angle (𝛽), roll rate (𝑝), yaw rate (𝑟) and bank angle (𝛷). The equilibrium 

points of states determined in lateral motion are 𝛽 = 0, 𝑝 = 0, 𝑟 = 0 and 𝛷 = 0. 

Thus, the linearized lateral motion Equations for 𝛽̇ , 𝑝̇ , 𝑟̇ ,  𝛷 ̇  are expressed in 

Equation (3.57)- (3.60). 

 

𝛽̇ =
𝑔𝐶𝑌𝛽

𝑉𝑝0𝐶𝐿
𝛽 − 𝑟 + (

𝑔

𝑉𝑝0

)𝛷 + (
𝑔𝐶𝑌𝛿𝑟

𝑉𝑝0𝐶𝐿
)𝛿𝑟                                                                            (3.57) 

 

𝑝̇ = (
𝑚𝑔𝑏𝐶𝑙𝛽

𝐼𝑥𝑥𝐶𝐿
)𝛽 + (

𝑚𝑔𝑏2𝐶𝑙𝑝

2𝐼𝑥𝑥𝑉𝑝0𝐶𝐿
)𝑝 + (

𝑚𝑔𝑏2𝐶𝑙𝑅

2𝐼𝑥𝑥𝑉𝑝0𝐶𝐿
) 𝑟 + 

𝐼𝑥𝑧

𝐼𝑥𝑥
𝑟̇ + (

𝑚𝑔𝑏𝐶𝑙𝛿𝑎

𝐼𝑥𝑥𝐶𝐿
)𝛿𝑎 + (

𝑚𝑔𝑏𝐶𝑙𝛿𝑟

𝐼𝑥𝑥𝐶𝐿
)𝛿𝑟 

       (3.58) 

 

 

𝑟̇ = (
𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿
)𝛽 + (

𝑚𝑔𝑏2𝐶𝑁𝑝

2𝐼𝑧𝑧𝑉𝑝0
𝐶𝐿

)𝑝 + (
𝑚𝑔𝑏2𝐶𝑁𝑅

2𝐼𝑧𝑧𝑉𝑝0
𝐶𝐿

)𝑟 +
𝐼𝑥𝑧

𝐼𝑧𝑧
𝑝̇ + (

𝑚𝑔𝑏𝐶𝑁𝛿𝑎

𝐼𝑧𝑧𝐶𝐿
)𝛿𝑎 + (

𝑚𝑔𝑏𝐶𝑁𝛿𝑟

𝐼𝑧𝑧𝐶𝐿
)𝛿𝑟 

    (3.59) 

 

𝛷 ̇ = 𝑝                                                                                                                                   (3.60) 

 

The state equations that occur in the lateral motion of the aircraft have been 

expressed. These equations can also be expressed in vector representation. The 

vector representation is given below in Equation (3.61). Representation of 𝐴 and 

𝐵 matrices in vector notation is given in equation (3.62). 

 

𝐶𝑋̇ = 𝐴𝑋 + 𝐵𝛿 → [

1 0 0 0
0 1 𝑐23 0
0 𝑐32 1 0
0 0 0 1

]

[
 
 
 
𝛽
𝑝
𝑟
𝛷̇
̇
̇

̇

]
 
 
 
= [

𝑎11 0 −1 𝑎14

𝑎21 𝑎22 𝑎23 0
𝑎31 𝑎32 𝑎33 0
0 1 0 0

] [

𝛽
𝑝
𝑟
𝛷

] + [

0 𝑏12

𝑏21 𝑏22

𝑏31 𝑏32

0 0

] [
𝛿𝑎

𝛿𝑟
]             (3.61) 

 

where 
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𝐶 = [

1 0 0 0
0 1 𝑐23 0
0 𝑐32 1 0
0 0 0 1

] , 𝐴 = [

𝑎11 0 −1 𝑎14

𝑎21 𝑎22 𝑎23 0
𝑎31 𝑎32 𝑎33 0
0 1 0 0

], 𝐵 = [

0 𝑏12

𝑏21 𝑏22

𝑏31 𝑏32

0 0

]                      (3.62)  

 

𝐶  is invertible matrix. Therefore, it can be move to do right hand side of the 

Equation (3.61). Therefore, The 𝐴 and 𝐵 matrices are updated in Equation (3.63). 

 

𝐴̂ = 𝐶−1𝐴 = [

𝑎11 0 −1 𝑎14

 𝑎̂21  𝑎̂22  𝑎̂23 0
 𝑎̂31  𝑎̂32  𝑎̂33 0
0 1 0 0

]   ,   𝐵̂ = 𝐶−1𝐵 =

[
 
 
 

0 𝑏12

𝑏̂21 𝑏̂22

𝑏̂31 𝑏̂32

0 0 ]
 
 
 
                            (3.63) 

 

Component of the 𝐴 and 𝐵 matrix detailed expressions can be obtained from the 

coefficient linearized lateral motion equations for 𝛽̇, 𝑝̇, 𝑟̇, 𝛷̇ in Equation (3.57) - 

(3.60). Thus, the coefficients of 𝐴  and 𝐵 matrices in Equation (3.63) are 

expressed in Equation (3.64) below. 

 

𝑐23 = −
𝐼𝑥𝑧

𝐼𝑥𝑥
                                                     𝑏12 = (

𝑔𝐶𝑌𝛿𝑟

𝑉𝑝0𝐶𝐿
) 

𝑐32 = −
𝐼𝑥𝑧

𝐼𝑧𝑧
                                                     𝑏21 = (

𝑚𝑔𝑏𝐶𝑙𝛿𝑎

𝐼𝑥𝑥𝐶𝐿
)    

𝑎11 =
𝑔𝐶𝑌𝛽

𝑉𝑝0𝐶𝐿
                                                             𝑏22 = (

𝑚𝑔𝑏𝐶𝑙𝛿𝑟

𝐼𝑥𝑥𝐶𝐿
)   

𝑎14 = (
𝑔

𝑉𝑝0
)                                                           𝑏31 = (

𝑚𝑔𝑏𝐶𝑁𝛿𝑎

𝐼𝑧𝑧𝐶𝐿
) 

𝑎21 = (
𝑚𝑔𝑏𝐶𝑙𝛽

𝐼𝑥𝑥𝐶𝐿
)                                                    𝑏32 = (

𝑚𝑔𝑏𝐶𝑁𝛿𝑟

𝐼𝑧𝑧𝐶𝐿
) 

𝑎22 = (
𝑚𝑔𝑏2𝐶𝑙𝑝

2𝐼𝑥𝑥𝑉𝑝0𝐶𝐿
)                                                 𝑎̂21 = −

1

𝑐23𝑐32−1
𝑎21 +

𝑐23

𝑐23𝑐32−1
𝑎31  

𝑎23 = (
𝑚𝑔𝑏2𝐶𝑙𝑅

2𝐼𝑥𝑥𝑉𝑝0𝐶𝐿
)                                                 𝑎̂22 = −

1

𝑐23𝑐32−1
𝑎22 +

𝑐23

𝑐23𝑐32−1
𝑎32 

𝑎31 = (
𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿
)                                                   𝑎̂23 = −

1

𝑐23𝑐32−1
𝑎23 +

𝑐23

𝑐23𝑐32−1
𝑎33  

𝑎32 = (
𝑚𝑔𝑏2𝐶𝑁𝑝

2𝐼𝑧𝑧𝑉𝑝0𝐶𝐿
)                                                 𝑎̂32 =

𝑐32

𝑐23𝑐32−1
𝑎22 −

1

𝑐23𝑐32−1
𝑎32 

𝑎33 = (
𝑚𝑔𝑏2𝐶𝑁𝑅

2𝐼𝑧𝑧𝑉𝑝0𝐶𝐿
)                                                 𝑏̂21 = −

1

𝑐23𝑐32−1
𝑏21 +

𝑐23

𝑐23𝑐32−1
𝑏31  

𝑎̂31 =
𝑐32

𝑐23𝑐32−1
𝑎21 −

1

𝑐23𝑐32−1
𝑎31                     𝑏̂31 =

𝑐32

𝑐23𝑐32−1
𝑏21 −

1

𝑐23𝑐32−1
𝑏31                                                                                                                                                                                            

 𝑎̂33 =
𝑐32

𝑐23𝑐32−1
𝑎23 −

1

𝑐23𝑐32−1
𝑎33                    𝑏̂32 =

𝑐32

𝑐23𝑐32−1
𝑏22 −

1

𝑐23𝑐32−1
𝑏32 

𝑏̂22 = −
1

𝑐23𝑐32−1
𝑏22 +

𝑐23

𝑐23𝑐32−1
𝑏32                                                               

                    

(3.64) 
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After the matrix coefficients defined above, the state equations can be rewritten 

as in Equation (3.65) - (3.68) below. 

 

𝛽̇ = 𝑎11𝛽 − 𝑟 + 𝑎14𝛷 + 𝑏12𝛿𝑟                                                                                                   (3.65) 

 

𝑝̇ = 𝑎̂21𝛽 + 𝑎̂22𝑝 + 𝑎̂23𝑟 + 𝑏̂21𝛿𝑎 + 𝑏̂22𝛿𝑟                                                                          (3.66) 

 

𝑟̇ = 𝑎̂31𝛽 + 𝑎̂32𝑝 + +𝑎̂33𝑟 + 𝑏̂31𝛿𝑎 + 𝑏̂32𝛿𝑟                                                                       (3.67) 

 

𝛷 ̇ = 𝑝                                                                                                                                          (3.68) 

 

Thus, the states of (3.65) - (3.68) are expressed in the Laplace domain by 

performing the Laplace transform. 

 

Then, Equation (3.69) and Equation (3.70) expressions can be obtained when the 

Equations in (3.65) - (3.68) are adjusted within themselves in order to derive the 

desired transfer functions. 

 

[𝑠2 − (𝑎11 + 𝑎33)𝑠 + (𝑎31 + 𝑎33𝑎11)]𝑟 

= [−𝑐32𝑠
3 + (𝑎32 + 𝑐32𝑎11)𝑠

2 − 𝑎32𝑎11𝑠 + 𝑎31𝑎14]𝛷 + (𝑏31𝑠 − 𝑏31𝑎11)𝛿𝑎 

+(𝑏32𝑠 + 𝑎31𝑏12 − 𝑏32𝑎11)𝛿𝑟  

 

    (3.69) 

[(𝑎31 − 𝑎21𝑐32)𝑠
2 + (𝑎21𝑎32 − 𝑎31𝑎32)𝑠]𝛷 

= [(𝑎21 − 𝑎31𝑐23)𝑠 + 𝑎31𝑎23 − 𝑎21𝑎33 ]𝑟 + (𝑎31𝑏21 − 𝑎21𝑏31)𝛿𝑎 + (𝑎31𝑏22 

−𝑎21𝑏32)𝛿𝑟  

 

    (3.70) 

After reaching these expressions, in order to simplify the expressions in Equation 

(3.69) and (3.70), the coefficients in the expressions are expressed in Equation 

(3.71) in the following format. 

 

𝑎1 = −(𝑎11 + 𝑎33)                                                𝑏3 = 𝑏32             

𝑎0 = 𝑎31 + 𝑎33𝑎11                                              𝑏2 = 𝑎31𝑏12 − 𝑏32𝑎11 
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𝑐3 = −𝑐32                                                              𝑑2 = 𝑎31 − 𝑎21𝑐32 

𝑐2 = 𝑎32 + 𝑐32𝑎11                                               𝑑1 = 𝑎21𝑎32 − 𝑎31𝑎22                 (3.71) 

𝑐1 = −𝑎32𝑎11                                                       𝑘1 = 𝑎21 − 𝑎31𝑐23 

𝑐0 = 𝑎31𝑎14                                                          𝑘0 = 𝑎31𝑎23 − 𝑎21𝑎33 

𝑏1 = 𝑏31                                                                𝑏4 = 𝑎31𝑏21 − 𝑎21𝑏31 

𝑏0 = −𝑏31𝑎11                                                       𝑏4 = 𝑎31𝑏21 − 𝑎21𝑏31 

 

Thus, in order to make examinations in the lateral motion, the ratio of the bank 

angle found in Equation (3.72) and (3.73) below to both aileron displacement and 

rudder displacement is determined as a result of the equations above. 

 

𝛷(𝑠) =
(𝑏4 + 𝑏1𝑘1)𝑠

2 + [𝑏4𝑎1 + 𝑏0𝑘1]𝑠 + (𝑏4𝑎0 + 𝑏0𝑘0)

𝐷1(𝑠)
𝛿𝑎

+
(𝑏5 + 𝑏3𝑘1)𝑠

2 + [𝑏5𝑎1 + 𝑏2𝑘1 + 𝑏3𝑘0]𝑠 + (𝑏5𝑎0 + 𝑏2𝑘0)

𝐷1(𝑠)
𝛿𝑟  

    

                                                                 
(3.72) 

where 

 

𝐷1(𝑠) = (𝑑2 − 𝑐3𝑘1)𝑠
4 + (𝑑2𝑎1 + 𝑑1 − 𝑐2 𝑘1 − 𝑐3𝑘0)𝑠

3

+ [𝑎0𝑑2 + 𝑎1𝑑1 − 𝑐1𝑘1 − 𝑐2𝑘0]𝑠
2 + [𝑎0𝑑1 − 𝑐1𝑘0 − 𝑐0𝑘1]𝑠 + 𝑐0𝑘0 

           (3.73) 

 

Thus, the transfer function, which generally results from the lateral motion of an 

aircraft, has been found. The analysis of the behavior of this transfer function 

bank angle is based on the changes of both aileron and rudder dispcement. also, 

this transfer function can be expressed in a separate form. In other words, the 

ratio of the bank angle to the aileron displacement and the ratio of the bank angle 

to the rudder displacement are explained separately below (Howe, 1980). First, 

the ratio of bank angle to aileron displacement in Equation (3.74) is given below. 

 

𝛷

𝛿𝑎
= −𝐾𝑎

𝑠2

𝑤𝑛𝛷
2 +

2𝜁𝛷𝑠
𝑤𝑛𝛷

+ 1

(𝑇𝛷1𝑠 + 1)(𝑇𝛷2𝑠 + 1)(
𝑠2

𝑤𝑛𝑟
2 +

2𝜁𝑟𝑠
𝑤𝑛𝑟

+ 1)
           (3.74) 

 

Lateral motion of the aircraft with the dutch-roll and spiral mode approximations may 

be expressed as the transfer function form in Equation (3.6.2-21). Input of this transfer 
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is aileron displacement while ouput is bank angle. As was done when expressing the 

pitch transfer function before, this equation was obtained in its plain form with 

some approximations. The dutch roll and spiral mode approaches we used in the 

lateral motion of the aircraft were used to obtain this equation. The time 

constants 𝑇𝛷1  and 𝑇𝛷2  are for the rolling motion, 𝑤𝑛𝛷   and 𝑤𝑛𝑟  are the natural 

frequency, 𝜁𝛷  and 𝜁𝑟  are the damping ratio, and the gain value is the gain of our 

system. These expressions are explained in (3.75). The definition of the symbols 

used for this form of this transfer function explained in Equation (3.74) is given 

in Equation (3.75). 

 

𝑇𝛷1 =
−2𝐼𝑥𝑥𝑉𝑝0𝐶𝐿

𝑚𝑔𝑏2𝐶𝑙𝑃
 

 

𝑇𝛷2 =
𝑉𝑝0

𝑔
(
𝐶𝑙𝑃𝐶𝑁𝛽 − 𝐶𝑁𝑃𝐶𝑙𝛽

𝐶𝑙𝑅𝐶𝑁𝛽 − 𝐶𝑁𝑅𝐶𝑙𝛽
) 

 

𝑤𝑛𝑟 = √
𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿
 

 

𝜁𝑟 =
𝑔

𝑚𝑔𝑏𝐶𝑁𝛽𝑉𝑝0

𝐼𝑧𝑧𝐶𝐿

(
𝑚𝑔𝑏2𝐶𝑁𝑅

2𝐼𝑧𝑧𝐶𝐿
+

𝐶𝑌𝛽

𝐶𝐿
) 

 

𝐾𝑎 = −(
𝑚𝑔𝑏2𝐶𝑁𝛽𝑚𝑔𝐶𝑙𝛿𝑎

𝐼𝑧𝑧𝐶𝐿𝐼𝑥𝑥𝐶𝐿
−

𝑚𝑔𝑏2𝐶𝑙𝛽𝑚𝑔𝐶𝑁𝛿𝑎

𝐼𝑧𝑧𝐶𝐿𝐼𝑥𝑥𝐶𝐿
) (

𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿
 +

𝑚𝑔𝑏2𝐶𝑁𝑅𝑔𝐶𝑌𝛽

𝐼𝑧𝑧𝐶𝐿2𝑉𝑝0𝐶𝐿𝑉𝑝0
) 

+
𝑚𝑔𝑏𝐶𝑁𝛿𝑎

𝑔𝑉𝑝0𝐶𝑌𝛽

𝐼𝑧𝑧𝐶𝐿𝑉𝑝0𝐶𝐿
(
𝑚𝑔𝑏𝐶𝑁𝛽𝑚𝑔𝑏2𝐶𝑙𝑅

𝐼𝑧𝑧𝐶𝐿2𝐼𝑥𝑥𝑉𝑝0𝐶𝐿
−

𝑚𝑔𝑏𝐶𝑙𝛽𝑚𝑔𝑏2𝐶𝑁𝑅

𝐼𝑥𝑥𝐶𝐿2𝐼𝑧𝑧𝑉𝑝0𝐶𝐿
) 

 

𝑤𝑛𝛷 = −
√

𝐾𝑎

1

[
𝑚𝑔𝑏2𝐶𝑁𝛽𝑚𝑔𝐶𝑙𝛿𝑎

𝐼𝑧𝑧𝐶𝐿𝐼𝑥𝑥𝐶𝐿
−

𝑚𝑔𝑏2𝐶𝑙𝛽𝑚𝑔𝐶𝑁𝛿𝑎

𝐼𝑧𝑧𝐶𝐿𝐼𝑥𝑥𝐶𝐿
+

𝑚𝑔𝑏𝐶𝑁𝛿𝑎

𝐼𝑧𝑧𝐶𝐿

1

(
𝑚𝑔𝑏𝐶𝑙𝛽

𝐼𝑥𝑥𝐶𝐿
+

𝑚𝑔𝑏𝐶𝑁𝛿𝑎𝐼𝑥𝑧

𝐼𝑧𝑧𝐶𝐿𝐼𝑥𝑥
)]

 

 

            (3.75) 
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𝜁𝛷 = −𝑤𝑛𝛷

1

𝐾𝑎
[−

𝑚𝑔𝑏2𝐶𝑁𝛽𝑚𝑔𝐶𝑙𝛿𝑎

𝐼𝑧𝑧𝐶𝐿𝐼𝑥𝑥𝐶𝐿
−

𝑚𝑔𝑏2𝐶𝑙𝛽𝑚𝑔𝐶𝑁𝛿𝑎

𝐼𝑧𝑧𝐶𝐿𝐼𝑥𝑥𝐶𝐿

+
𝑚𝑔𝑏𝐶𝑁𝛿𝑎

𝐼𝑧𝑧𝐶𝐿
(
𝑔𝐶𝑌𝛽

𝑉𝑝0𝐶𝐿
+

𝑚𝑔𝑏2𝐶𝑁𝑅

2𝐼𝑧𝑧𝑉𝑝0𝐶𝐿
)

−
𝑚𝑔𝑏𝐶𝑁𝛿𝑎

𝑔𝑉𝑝0𝐶𝑌𝛽

𝐼𝑧𝑧𝐶𝐿𝑉𝑝0𝐶𝐿
(
𝑚𝑔𝑏𝐶𝑙𝛽

𝐼𝑥𝑥𝐶𝐿
+

𝑚𝑔𝑏𝐶𝑁𝛿𝑎
𝐼𝑥𝑧

𝐼𝑧𝑧𝐶𝐿𝐼𝑥𝑥
)

+
𝑚𝑔𝑏𝐶𝑙𝛽

𝐼𝑥𝑥𝐶𝐿
(
𝑚𝑔𝑏𝐶𝑁𝛽𝑚𝑔𝑏2𝐶𝑙𝑅

𝐼𝑧𝑧𝐶𝐿2𝐼𝑥𝑥𝑉𝑝0𝐶𝐿
−

𝑚𝑔𝑏𝐶𝑙𝛽𝑚𝑔𝑏2𝐶𝑁𝑅

𝐼𝑥𝑥𝐶𝐿2𝐼𝑧𝑧𝑉𝑝0𝐶𝐿
)] 

 

After explaining the ratio of bank angle to aileron displacement as above, this 

time again in bear form, the ratio of bank angle to rudder displacement is 

explained below in Equation (3.76). 

 

𝛷

𝛿𝑟
= 𝐾𝑟

(𝑇𝛷𝑟1𝑠 + 1)(−𝑇𝛷𝑟2𝑠 + 1)

(𝑇𝛷1𝑠 + 1)(𝑇𝛷2𝑠 + 1)(
𝑠2

𝑤𝑛𝑟
2 +

2𝜁𝑟𝑠
𝑤𝑛𝑟

+ 1)
 

         (3.76) 

 

While analyzing the aileron control surface behavior, the states in the lateral motion 

of the aircraft and the equations resulting from the linearization were extracted. Here 

again, we will reach the transfer function, which is the ratio of bank angle to rudder 

displacement in (3.6.2-19), using those equations.  As we have done before when 

expressing the pitch transfer function and the transfer function of the ratio of the 

bank angle to aileron displacement, this equation is also simply obtained by some 

approximation. In order to obtain this equation, the dutch roll and spiral mode 

approaches that we use in the lateral motion of the aircraft are used. 𝑇𝛷1, 𝑇𝛷2, 𝑤𝑛𝑟 

and 𝜁𝑟  values expressed above have the same value here as they were the 

behavior of the bank angle before. In addition, 𝑇𝛷𝑟1  and 𝑇𝛷𝑟2  time constants and 

the gain of our system are defined here. These expressions are explained in (3.75) 

and (3.77). Parameter of the Equation (3.76)  is presented in Equation (3.77). 

 

𝐾𝑟 = (
𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿

𝑚𝑔𝑏𝐶𝑙𝛿𝑟

𝐶𝐿𝐼𝑥𝑥

−
𝑚𝑔𝑏𝐶𝑙𝛽

𝐼𝑥𝑥𝐶𝐿

𝑚𝑔𝑏𝐶𝑁𝛿𝑟

𝐶𝐿𝐼𝑧𝑧

) (
𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿

+
𝑚𝑔𝑏2𝐶𝑁𝑅

2𝐼𝑧𝑧𝐶𝐿𝑉𝑝0

𝑔𝐶𝑌𝛽

𝐶𝐿𝑉𝑝0

) 

 

+(
𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿

𝑚𝑔𝑏2𝐶𝑙𝑅

2𝐼𝑥𝑥𝐶𝐿𝑉𝑝0

−
𝑚𝑔𝑏𝐶𝑙𝛽

𝐶𝐿𝐼𝑥𝑥

𝑚𝑔𝑏2𝐶𝑁𝑅

𝐶𝐿

)(
𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿

𝑔𝐶𝑌𝛿𝑟

𝐶𝐿𝑉𝑝0

−
𝑚𝑔𝑏𝐶𝑁𝛿𝑟

𝐶𝐿𝐼𝑧𝑧

𝑔𝐶𝑌𝛽

𝐶𝐿𝑉𝑝0

) 

 

                                                    

(3.77) 
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𝑇𝛷𝑟1
= −[

𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿

𝑚𝑔𝑏𝐶𝑙𝛿𝑟

𝐶𝐿𝐼𝑥𝑥

−
𝑚𝑔𝑏𝐶𝑙𝛽

𝐼𝑥𝑥𝐶𝐿

𝑚𝑔𝑏𝐶𝑁𝛿𝑟

𝐶𝐿𝐼𝑧𝑧

+
𝑚𝑔𝑏𝐶𝑁𝛿𝑟

𝐶𝐿𝐼𝑧𝑧

(
𝑚𝑔𝑏𝐶𝑙𝛽

𝐶𝐿𝐼𝑥𝑥

 

+
𝑚𝑔𝑏𝐶𝑁𝛽𝐼𝑥𝑧

𝐼𝑧𝑧𝐶𝐿𝐼𝑥𝑥

)]
1

𝐷
 

 

𝐷 = [
𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿

𝑚𝑔𝑏𝐶𝑙𝛿𝑟

𝐶𝐿𝐼𝑥𝑥

−
𝑚𝑔𝑏𝐶𝑙𝛽

𝐼𝑥𝑥𝐶𝐿

𝑚𝑔𝑏𝐶𝑁𝛿𝑟

𝐶𝐿𝐼𝑧𝑧

(−(
𝑔𝐶𝑌𝛽

𝐶𝐿𝑉𝑝0

+
𝑚𝑔𝑏2𝐶𝑁𝑅

2𝐼𝑧𝑧𝐶𝐿𝑉𝑝0

)) 

 

+(
𝑚𝑔𝑏𝐶𝑙𝛽

𝐶𝐿𝐼𝑥𝑥

−
𝑚𝑔𝑏𝐶𝑁𝛽𝐼𝑥𝑧

𝐼𝑧𝑧𝐶𝐿𝐼𝑥𝑥

) (
𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿

𝑔𝐶𝑌𝛿𝑟

𝐶𝐿𝑉𝑝0

−
𝑚𝑔𝑏𝐶𝑁𝛿𝑟

𝐶𝐿𝐼𝑧𝑧

𝑔𝐶𝑌𝛽

𝐶𝐿𝑉𝑝0

) 

+
𝑚𝑔𝑏𝐶𝑁𝛿𝑟

𝐼𝑧𝑧𝐶𝐿

(
𝑚𝑔𝑏𝐶𝑁𝛽

𝐼𝑧𝑧𝐶𝐿

𝑚𝑔𝑏2𝐶𝑙𝑅

2𝐼𝑥𝑥𝐶𝐿𝑉𝑝0

−
𝑚𝑔𝑏𝐶𝑙𝛽

𝐶𝐿𝐼𝑥𝑥

𝑚𝑔𝑏2𝐶𝑁𝑅

𝐶𝐿

)] + 𝐾𝑟  

 

Thus, the transfer functions resulting from both the longitudinal and lateral 

motions of an aircraft are expressed. These transfer functions will be analyzed 

using system identification methods in the following sections and it will be 

examined whether the same result is given with the original data. Therefore, in 

this section, the mathematical model of the airaircraft has been derived and the 

transfer functions to be analyzed are created by linearizing the nonlinear 

equations. 
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4. SYSTEM IDENTIFICATION OF AN AIRCRAFT 

 

In this section, what the system definition is, its history, the description of the 

system definition tool in the MATLAB program and how the system identification 

is used on the aircraft are explained. By explaining the parameter estimation 

methods, the equations resulting from the behavior of aircraft control surfaces 

with online and offline parameter estimation methods are estimated. In this 

chapter, the system identification procedure for the aircrafts was explained 

based on the book “Aircraft System Identification: Theory and Practise” by Klein 

and Morelli (Klein and Morelli, 2006).  

 

4.1.  Definition of System Identification 

 

System identification creates mathematical models of any dynamical system 

based on the behavior of input and output signals. The estimated models are then 

utilized to examine the behavior of the dynamic system. System identification 

tries to develop a significant mathematical model that relates the inputs of the 

system with the outputs using the experimental data measured from the system. 

As observed in Figure 4.1 and Figure 4.2, the inputs and outputs of the system are 

generally known as the system definition process and the model of the dynamic 

system emerges. In other words, when the input values that will enter our system 

and the behavior of our system as output are known, our system can be defined 

and the state equation of our system is found. The dynamical system represented 

via state space approach may be seen in Figure 4.1 A dynamic system is a 

mathematical relationship between the input and output variables of the system. 
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Figure 4.1. Representation of dynamic system 
 

 
 

Figure 4.2. System identification of aircraft system 
 

Three different types of problems are encountered in system theory, with the 

other two being any of the input, output and model functions described above. 

The three problems that arise according to the state of these parameters are the 

simulation, control and definition of the dynamic system. These three problems 

are below. 

 

1) Simulation problem by giving the input u and system functions f and g and 

finding the output y.  

2) The control problem is to give output y and system functions f and g and 

find the input u. 
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3) The identification problem is to find the system functions f and g by giving 

the input u and the output z. 

 

System identification is concerned with the determination of the mathematical 

model structure that corresponds to the generally unknown dynamic system. For 

a given model, the parameters within the model are quantified by applying a 

numerical, usually statistical procedure. Basically, this part of the model building 

process is called “parameter estimation” as seen in the Figure 4.3. In order to 

evaluate the model suitability, the "model validation" step comes after the 

parameter estimation stage. If it turns out that the defined model does not meet 

the requirements, the model structure must be changed again and the process 

must be repeated from the beginning. Therefore, system identification is 

generally an iterative process that is significantly required. 

 

 
 

Figure 4.3. Definition of system identification (Jategaonkar, 2006) 
 

In Figure 4.4, showed the system identification prodecure stage. The system 

identification process starts by making experiments to collect data on the system 

while determining the measurements of system inputs and outputs. After data is 

collected, general equations that describe a model or system are developed. Then 

the unknown parameters in the created model limits are tried to be determined. 
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Figure 4.4. System identification procedure 
 

4.2. History of System Identification 

 

The term system identification was coined by Lotfi Zadeh in 1962. Zadeh 

introduced the term system identification as  “the determination on the basis of 

input and output, of a system within a specified class of systems, to which the 

system under test is equivalent” (Zadeh, 1962). The earliest studies in system 

identification were created by statistics and time series communities. System 

description has its roots in the studies, “Theory of the Motion of Heavenly Bodies 

Moving about the Sun in Conic Sections” the theory stationary stochastic 

processes was developed during the period 1920 to 1970 (Gauss, 1809). In the 

1960s, the model-based control era and the work of expressing the systems as 

state space functions began. At that time, various techniques were used to 

express physical systems in this way. The need for system definition has arisen 

due to the increasing pressure to apply these modern techniques to areas where 

models are not available in physics. 
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Then, system identification is defined as the task of creating a dynamic model in 

state space and input/output types that can predict the output signals of a 

dynamic system. 

 

The studies “Effective construction of linear state variable models from input-

output functions” (Ho and Kalman, 1965) and “Numerical identification of linear 

dynamic systems from normal operating records” (Aström and Bohlin, 1965) 

may be stated as one of the fundamental researches related to system 

identification. 

 

4.3.  System Identification Toolbox 

 

In this section, the tool of MATLAB program is used as a system identification 

tool. The system identification toolbox enables mathematical models of dynamic 

systems to be created from measured input-output data. Thanks to the tool, we 

obtain dynamic systems that can be modeled simply. Also we can use time-

domain and frequency-domain input-output data to define continuous-time and 

discrete-time transfer functions, process models, and state-space models. 

 

Using the MATLAB program system definition tool, examples are made on some 

systems and the use of the tool is shown. The screen demonstrated in Figure 4.5 

appears when the program's tool is opened for the first time. Using the system 

identification tool, we will be able to accomplish below tasks. 

 

 Import data from the MATLAB workspace into the system identification 

toolbox. 

 Plot the data. 

 Process data by removal offsets from the input and output signals. 

 Estimate, validate, and compare linear models. 

 Export models to the MATLAB workspace. 
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Figure 4.5. System identification tool screen 
 

In order to better comprehend the tool in the MATLAB program and to use its 

functions, a sample system has been determined, and the program visuals and 

how it works are given on it. An example transfer function determined is given in 

Equation (4.1). In this transfer function, 𝑦  is output and 𝑢  is input. Also the 

transfer function is expressed in the laplace domain and 𝑠 is the laplace variable. 

 

𝑦

𝑢
=

100

𝑠2 + 25𝑠 + 100
 

        (4.1) 

 

 

In order to express the output in the specified butransfer function, an input must 

be defined. As seen in Equation (4.2), the unit step function is defined as input to 

the system. 

 

𝑢 = 1                                                                                                                                      (4.2) 

 

After the input is determined, the transfer function, which is its counterpart in 

the laplace dominant, is expressed in Equation (4.3) below. 
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𝑦 =
1

𝑠

100

𝑠2 + 25𝑠 + 100
 

        (4.3) 

 

 

Thus, the output of the determined system is indicated in the time domain in 

Equation (4.4) as follows.         

                                                                                                                    

𝑦(𝑡) = 6.66(𝑒−5𝑡 − 𝑒−20𝑡) + 1                                                                                       (4.4) 

 

Thus, using the system identification tool, we have obtained the input and output 

values that we will define to the tool to find the transfer function that I have 

determined as an example. In matlab script part, we can define ouput function, 

input value and time interval. After opening the system identification tool, we 

first call the data according to the type of data from the ‘import data’ section as 

shown in Figure 4.6. 

 

 
 

Figure 4.6. System identification tool import data part 
 

After importing the data, we enter the input output values defined in the MATLAB 

workspace and the starting time and sampling interval while sampling from our 
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output data on the screen in Figure 4.7. The sampling time is the time between 

consecutive data samples in your experiment and must be the numerical time 

interval at which your data is sampled in any units. 

 

 
 

Figure 4.7. System identification tool data definiton 
 

After clicking the import button, the defined input output values come to the data 

screen in the Figure 4.8. More than one data can be imported from the data 

screen. The data to be analyzed is dragged to the ‘working data’ section. 
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Figure 4.8. System identification tool data views 
 

After dragging the data to the working area, the desired model type is selected 

from the ‘estimate’ part shown in Figure 4.9. In the example above, since the 

system is taken as a transfer function, the transfer function model has been 

selected here. 

 

 
 

Figure 4.9. System identification tool estimate part 
 

In Figure 4.10, the pole and zero numbers of our system are entered and the 

‘estimate’ button is clicked. 



42 

 
 

Figure 4.10. System identification tool transfer function definition 
 

In Figure 4.11, The transfer function definition process screen appears and it is 

seen how successfully the data are estimate.  

 

 
 

Figure 4.11. System identification tool estimation progress viewer 
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In Figure 4.12, the model with estimate comes to the ‘model views’ section and 

by right clicking, the transfer function, which is estimate, is found as seen in 

Figure 4.13. 

 

 
 

Figure 4.12. System identification tool model views part 
 

 
 

Figure 4.13. Estimation transfer function 
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4.3.1. Aircraft pitch transfer function estimation via toolbox 
 

In the section above, based on the transfer function of a simple system, it was 

explained how to obtain the transfer function of the system by using the system 

identification tool after the input and output values determined. In this context, 

the use of system identification tool was explained with this example. 

 

In this section, the pitch transfer function as the behavior of the aircraft elevator 

control surface was obtained using the system definition tool. The pitch transfer 

function is as follows in Howe lecture notes (Howe, 1980). The transfer function 

to be examined in (4.5) and the specified input expression in (4.6) are given. 

 

𝜃

𝛿𝑒
=

−26(53.2𝑠2 + 39.1𝑠 + 1)

55.8𝑠4 + 112𝑠3 + 1815𝑠2 + 48.2𝑠 + 1
 

        (4.5)      
 

 

𝑢 = 0.1𝑠𝑖𝑛𝑡                                                                                                                           (4.6) 

 

In Figure 4.14 has defined the pole and zero numbers of our model. 

 

 
 

Figure 4.14. System identification tool transfer function definition 
 

As seen in Figure 4.15, the success rate of the estimate result of the examined 

pitch transfer function using the system definition tool is specfied.  
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Figure 4.15. System identification tool estimation progress viewer 
 

In Figure 4.16 has seen the behavior of our model after being estimate on the 

‘model views’ screen. 

 

 
 

Figure 4.16. System identification tool model views part 
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Finally, as can be seen in the Figure 4.17, the transfer function that our system 

estimates with the system identification tool was found. 

 

 
 

Figure 4.17. System identification tool model views part 
 

4.4. Parameter Estimation 

 

The parameter estimation process is a type of system identification that deals 

with estimating the values of parameters based on measured empirical data with 

a random component. When estimating parameters, a basic physical setting is 

described in such a way that their values affect the distribution of the measured 

data. Parameter estimation is finding the values of unknown model parameters 

in a default model structure. For parameter estimation, a model structure to be 

estimated with unknown parameters (𝜃) , a mathematical model for the 

measurement process, Observations or measurements (𝑧), assumptions about 

uncertainty in model parameters and measurement noise are required (𝑣) . 

When 𝑦 is output as follows Equatio (4.7) , the model is linear. 

 

𝑦 = 𝐻𝜃                                                                                                                                   (4.7) 

                                                                                                                           

where the matrix H is assumed to be known. Then the measurement equation can 

be expressed as in Equation (4.8). 
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𝑧 = 𝐻𝜃 + 𝑣                                                                                                                           (4.8) 

 

Figure 4.18 shows how the parameter approach is in general. In this figure, data 

collection, which is the mentality of the parameter estimation, is a system that 

will be estimate and the process of the most estimation process and the 

emergence of the model is shown.  

 

 
 

Figure 4.18. Parameter estimation (Remli, et al. 2017) 
 

Below, in the classification created in Figure 4.19, various parameter estimation 

methods are shown. While this classification was made, more than one method 

was classified as online and offline. Parameter estimation methods expressed in 

this way will be explained as the subject progresses. 
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Figure 4.19. Parameter Estimation Methods 
 

4.4.1. Offline estimation 
 

Collect all the input/output data and then estimate the model parameter. In other 

words, data analysis or offline parameter estimation methods used after the 

flight. 

 

4.4.1.1.  Bayesian model 

 

Bayesian model follows from the Bayesian estimation theory explained. A model 

where you use the probability to represent all uncertainity in the model, 

representing both the uncertainity about the output and the uncertainity about 

the input in the model. 𝜽 is a vector of random variables with probability density 

𝒑(𝜽). 𝒗 is a random vector with probability density 𝒑(𝒗). The bayesian model is 

expressed in Equation (4.9).      

   

 

Parameter 
Estimation

Offline 
Estimation

Bayesian 
Model

Fisher 
Model

Maximum 
Likelihood 

Method

Least 
Square 
Model

Online 
Estimation

Recursive 
Least 

Square

Time-Varying 
Parameters

Exponenially 
Least Square

Sequential 
Least Square

Kalman Filter
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𝑷(𝜽│𝒛) =
𝒑(𝒛│𝜽)𝒑(𝜽)

𝒑(𝒛)
                  (4.9) 

 

4.4.1.2.  Fisher model   

 

Fisher Model is based on the estimation theory using the concept of a likelihood 

function. 𝜃  is a vector of unknown constant parameters. 𝑣  is a random vector 

with probability density 𝑝(𝑣). 

 

𝐿(𝑧;  𝜃) =  𝑝(𝑧 │𝜃)                                                                                                                       

 

Common estimator for the Fisher model is the maximum likelihood (𝑀𝐿) 

estimator, which is equal to the value of u that maximizes 𝐿( 𝑧;  𝑢 ) for given 𝑧. 

 

4.4.1.2.1.  Maximum likelihood method 

 

Our aim in applying the Maximum Likelihood method is to estimate the 

parameters of the stack to which the data we have belongs. Because it is generally 

very difficult to know the real value of the parameter of the stack. Here, the 

Maximum Likelihood Method is just one of many solutions that can be applied to 

overcome this difficulty. This technique used for estimating the parameters of a 

given distribution, using some observed data. Maximum Likelihood Method, 

unlike Bayes model, sees parameters as a fixed point. In other words, the result 

of the operation is a fixed number.  

 

For example, let us have samples drawn from a certain stack in the form of 𝑍𝑁 =

[𝑧(1)𝑧(2)…𝑧(𝑁)]𝑇 . The maximum likelihood method is expressed in Equation 

(4.10).   

         

𝐿[𝑍𝑁; 𝜃] = 𝐿[𝑧(1)𝑧(2)… 𝑧(𝑁); 𝜃] 

                 = 𝐿[𝑧(𝑁)|𝑍𝑁−1; 𝜃]𝐿[𝑍𝑁−1; 𝜃] 

                       .                                                                                                                       (4.10) 

                       = ∏ 𝐿[𝑧(𝑖)|𝑍𝑖−1; 𝜃]𝑁
𝑖=1                                                                    
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4.4.1.3. Least square method 

 

Creating a curve or mathematical function that best fits a set of data points is 

known as curve fitting. For a given data set, fitting curves of a particular type are 

generally not unique. The best fit curve with minimum deviations from all data 

points can be obtained by the least squares method (Molugaram and Rao, 2017).  

The least squares method is a standard regression method used to write the 

mathematical connection between two physical quantities that vary depending 

on each other as an equation that is as realistic as possible. In other words, this 

method serves to find a function curve that will pass "as close as possible" to the 

data points obtained from the measurement result. As can be seen in Figure 4.20, 

if it is desired to express the connection between two axes as a single linear 

equation, a line must be found to pass as close to these points as possible. The 

Least Squares Method consists of the coefficients in our linear equation that 

minimize the sum of the squares of the distances between the points on the line 

and the scattering points as a result of the approximation. 

 

 
 

Figure 4.20 Least square estimation 
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In order to explain the least squares method better in general, it is defined over 

the sample data points. Assume that the data points are 

(𝒙𝟏, 𝒚𝟏), (𝒙𝟐, 𝒚𝟐), . . . , (𝒙𝒏, 𝒚𝒏)  where 𝒙  is the independent variable, 𝒚  is the 

dependent variable and 𝒏 is the number of data points. As can be seen in Equation 

(4.11) below, the error occurring in the result of the curve fitted at each data point 

is shown. 

 

𝑒1 = 𝑦1 − 𝑓(𝑥1), 

𝑒2 = 𝑦2 − 𝑓(𝑥2), 

. 

.                                                                                                                                              (4.11)                      

. 

𝑒𝑛 = 𝑦𝑛 − 𝑓(𝑥𝑛) 

 

According to the definitions above, this error should be minimum, ie it should be 

 ∑ 𝒆𝒊
𝟐𝒏

𝟏 = ∑ [𝒚𝒊 − 𝒇(𝒙𝒊)]
𝟐𝒏

𝟏 . As can be seen in Figure 4.21, the representation of the 

general definition is given. that is, values around a curve and estimated values 

calculated by LS method are explained on the figure. 

 

 
 

Figure 4.21. Least square method  
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The general definition of the least squares method has been briefly explained 

above. Now, the algorithm logic will be expressed in detail and the sense of 

finding the unknown parameters with which algorithm will be expressed. It will 

be used to estimate the parameters, which are the coefficients of transfer 

functions resulting from the behavior of aircraft control surfaces, which are the 

general rationale of this thesis and will be explained later. 

 

As mentioned, in order to use this method, a system must have an input and 

output to this system. When performing a design, there is an input-output 

relation to the plant of that system and an existing transfer function in the plant 

as shown in Figure 4.22 (Chen and Tomizuka, 2014). 

 

 
 

Figure 4.22. Input-output relationship (Chen and Tomizuka, 2014) 
 

The elements of the transfer function given in the plant given in Figure 4.29 are 

expressed in Equation (4.12). From here, the input-output relationship will be 

determined and the algorithm of the least square method will be given gradually. 

𝐵(𝑧−1) = 𝑏0 + 𝑏1𝑧
−1 + ⋯+ 𝑏𝑚𝑧−𝑚   

                                                                                                                                           (4.12) 

𝐴(𝑧−1) = 1 + 𝑎1𝑧
−1 + ⋯+ 𝑎𝑛𝑧−𝑛 

 

After determining the elements of the mathematical function, the input and output 

elements are determined. 𝑦(𝑘 + 1) is a linear combination of 𝑦(𝑘), . . . , 𝑦(𝑘 + 1 −

𝑛) and 𝑢(𝑘), . . . , 𝑢(𝑘 − 𝑚) and is expressed in Equation (4.13). 

 

𝑦(𝑘 + 1) = −∑𝑎𝑖𝑦(𝑘 + 1 − 𝑖) + ∑𝑏𝑖𝑢(𝑘 − 𝑖)

𝑛

𝑖=0

𝑛

𝑖=1

 
 

                          (4.13) 
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After specifying the transfer function in Equation (4.13), the unknown parameter 

and regressor vector are defined. Regression is a method for modeling the 

relationship between a scalar response and one or more explanatory 

variables.  𝜃 = [𝑎1, 𝑎2, … 𝑎𝑛, 𝑏0, 𝑏1, … , 𝑏𝑚]𝑇  and the regressor vector 𝜙(𝑘) =

[−𝑦(𝑘), … ,−𝑦(𝑘 + 1 − 𝑛), 𝑢(𝑘), 𝑢(𝑘 − 1),… , 𝑢(𝑘 − 𝑚)]𝑇  are the parameter 

vector that must be defined in the transfer function. The general system model 

expressing the relationship between the unknown parameter vector and the 

regressor vector is expressed in Equation (4.14). 

 

𝑦(𝑘 + 1) = 𝜃𝑇𝜙(𝑘)                                                                                                          (4.14) 

 

𝜙(𝑘) and 𝑦(𝑘 + 1) are measured and known values. The main purpose is to find 

the unknown paramter vector 𝜃. That is, the 𝜃 to be found by estimating here. 

Estimated version of the parameter vector 𝜃𝑇 = [𝑎1̂, 𝑎2̂, … 𝑎𝑛̂, 𝑏0̂, 𝑏1̂, … , 𝑏𝑚̂]
𝑇

. At 

time 𝑘 is expressed as Equation (4.15), and estimation can be performed. 

𝑦 ̂(𝑘 + 1)  = 𝜃𝑇𝜙(𝑘)                                                                                                       (4.15) 

 
where 

 

𝜃𝑇 = [𝑎1̂(𝑘), 𝑎2̂(𝑘), … 𝑎𝑛̂(𝑘), 𝑏0̂(𝑘), 𝑏1̂(𝑘), … , 𝑏𝑚̂(𝑘)]
𝑇

 

 

As stated at the beginning of the subject, the error should be minimized as a result 

of the curve fitting, which is the general purpose. In this context, the error 

function 𝐽𝑘 in Equation (4.4.1.3-6) defined below should be minimized. 

 

𝐽𝑘 = ∑[𝑦(𝑖) − 𝜃𝑇(𝑘)𝜙(𝑖 − 1)]2
𝑘

𝑖=1

  

 

       (4.16) 

The solution of equation (4.16) is given in equation (4.17). 

𝐽𝑘 = ∑[𝑦(𝑖)2 + 𝜃𝑇(𝑘)𝜙(𝑖 − 1)𝜙𝑇(𝑖 − 1)𝜃(𝑘)

𝑘

𝑖=1

− 2𝑦(𝑖)𝜙𝑇(𝑖 − 1)𝜃(𝑘)]2 
 

         (4.17) 
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Since the error function 𝐽𝑘 is desired to be minimum, the partial derivative of the 

function 𝐽𝑘 to the unknown parameter vector must be 0 (𝜕𝐽𝑘/𝜕𝜃 (𝑘)  =  0). From 

here, the parameter vector found by applying the least square method is 

expressed as in Equation (4.18). 

 

While 𝜃 is found here, the matrix inversion method has been applied. This matrix 

inversion method can be applied only when the coefficient matrix is a square 

matrix and non-singular. Thus, 𝜙  is square and non-singular matrix. If matrix 

determinant is equal non-zero, this matrix is non-singular. Since 𝜙  is non-

singular, 𝜙−1  exists and 𝜙−1 𝜙 =  𝜙𝜙−1 = 𝐼 . Where 𝐼  is identity matrix (𝜙𝜃 =

𝑦 → 𝜙−1(𝜙𝜃)= 𝜙−1𝑦 → 𝜃 = 𝜙−1𝑦). 

 

𝜃 (𝑘) = 𝐹(𝑘)∑ 𝜙(𝑖 − 1)𝑦(𝑖)

𝑘

𝑖=1

 

 

(4.18) 

where  

 

𝑭(𝒌) = [∑𝝓(𝒊 − 𝟏)𝝓𝑻(𝒊 − 𝟏)

𝒌

𝒊=𝟏

]

−𝟏

 

 

 

As a result, all parameters are obtained using Equation (4.18). Thus, as the 

advantage of the least square method, derivatives are not taken separately for 

each parameter. Solve each parameter with the expression in equation (4.18). 

 

4.4.1.3.1. Estimation of aircraft control surfaces behavior via LSM 

 

The definition, algorithm and working sense of the least squares method are 

explained above. In this section, the parameter estimation will be made about 

how close the transfer functions formed as a result of the linearized aircraft 

motion equations previously described in the mathematical modeling section to 

their original state with the least-squares method. The parameter estimation 

process will be performed for the transfer functions of all three aircraft control 

surface behaviors: elevator, aileron and rudder. The original forms of the transfer 
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functions to be obtained in the estimation process were created according to the 

flight data in the Howe lecture notes (Howe, 1980). 

 

Before starting to examine the transfer functions explained in the mathematical 

modeling section, a transfer function representation in general and the 

representation of unknown parameters, known and measurable data through 

this transfer function are expressed. In general, system equation in (4.19), system 

output in (4.20) and the matrix structure of our system in (4.21), unknown 

parameters (𝛼, 𝛽, 𝛾, 𝑎, 𝑏, 𝑐, 𝑑 ) matrix, output and regressor vector matrix are 

shown as follows (4.22). 

 

𝑦

𝑢
=

𝛼𝑠2 + 𝛽𝑠 + 𝛾

𝑠4 + 𝑎𝑠3 + 𝑏𝑠2 + 𝑐𝑠 + 𝑑
 

                                                       

(4.19) 

 

𝑦^(4) = −𝑎𝑦 − 𝑏𝑦̈ − 𝑐𝑦̇ − 𝑑𝑦 + 𝛼𝑢̈ + 𝛽𝑢̇ + 𝛾𝑢                                                       (4.20) 

 

[
 
 
 
 
 
 
𝑦1 𝑦̈1 𝑦̇1 𝑦1 𝑢̈1 𝑢̇1 𝑢1

𝑦2 𝑦̈2 𝑦̇2 𝑦2 𝑢̈2 𝑢̇2 𝑢2

𝑦3 𝑦̈3 𝑦̇3 𝑦3 𝑢̈3 𝑢̇3 𝑢3

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . . ]
 
 
 
 
 
 

   

[
 
 
 
 
 
 
−𝑎
−𝑏
−𝑐
−𝑑
𝛼
𝛽
𝛾 ]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑦^(4)

1

𝑦^(4)
2

𝑦^(4)
2

.

.

.

. ]
 
 
 
 
 
 
 

                                          (4.21) 

 

Therefore,  

 

𝛷 =

[
 
 
 
 
 
 
𝑦1 𝑦̈1 𝑦̇1 𝑦1 𝑢̈1 𝑢̇1 𝑢1

𝑦2 𝑦̈2 𝑦̇2 𝑦2 𝑢̈2 𝑢̇2 𝑢2

𝑦3 𝑦̈3 𝑦̇3 𝑦3 𝑢̈3 𝑢̇3 𝑢3

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . . ]
 
 
 
 
 
 

   𝜃 =  

[
 
 
 
 
 
 
−𝑎
−𝑏
−𝑐
−𝑑
𝛼
𝛽
𝛾 ]

 
 
 
 
 
 

      𝑦 =

[
 
 
 
 
 
 
 
𝑦^(4)

1

𝑦^(4)
2

𝑦^(4)
2

.

.

.

. ]
 
 
 
 
 
 
 

                  (4.22)            
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Thus, it has been shown what kind of mantacite is applied while making future 

examinations.  

 

In this section, the transfer functions resulting from the behavior of all three 

control surfaces will be tried to be estimated by the least squares method. While 

performing the estimation process, the algorithm and model created in the 

MATLAB/Simulink program will be used. When creating the model, the pitch 

transfer function obtained in the mathematical modeling section above was also 

created for the transfer functions, which are the ratio of the bank angle to aileron 

and rudder dispacement. Doublet input is defined for elevator, aileron and rudder 

displacements which are the inputs of the systems. Doublet inputs are used to 

denote side pulses (Klein and Morelli, 2006). The graph in Figure 4.23 below can 

be shown as an example of doublet input. 

 

 
 

Figure 4.23. Doublet input (Klein and Morelli, 2006) 
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4.4.1.3.1.1. Elevator control surfaces behavior via LSM 

 

Here, firstly, the transfer function resulting from the behavior of the elevator 

control surface will be analyzed. This situation, which occurs as a result of the 

longitudinal motion of an aircraft, has been described before. The pitch transfer 

function in Equation (3.52) and (3.53) or (3.54) will be estimated by the least 

squares method. In order to run the algorithm of the least squares method 

created in the MATLAB/Simulink program, a model was created as shown in 

Figure 4.24, which also provides the input of the original data. 

 

 
 

Figure 4.24. MATLAB/Simulink Model for Elevator Control Surface 
 

Below, the pitch transfer function created with the original data is given in 

Equation (4.23). 

 

(
𝜃

𝛿𝑒
)
𝑂𝑅𝐽

=
−24.7885𝑠2 − 18.2186𝑠 − 0.4659

𝑠4 + 2.0072𝑠3 + 32. 5269𝑠2 + 0.8638𝑠 + 0.0179
                 (4.23) 
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When the model in Figure 4.24 and the algorithm created in the MATLAB 

program are run, the estimated transfer function obtained by the least squares 

method is obtained in Equation (4.24) below. 

 

(
𝜃

𝛿𝑒
)
𝐿𝑆𝑀

=
−24.7885𝑠2 − 18.2191𝑠 − 0.4447

𝑠4 + 2.0072𝑠3 + 32. 5269𝑠2 + 0.864𝑠 + 0.0186
                 (4.24) 

 

Thus, the pitch transfer function resulting from the longitudinal motion of an 

aircraft was estimated by the least squares method. The graph in Figure 4.25 was 

again created in the MATLAB/Simulink program in order to see the graphical 

comparison of both transfer functions by using the original transfer function and 

the transfer function estimated by the least squares method. 

 

 
 

Figure 4.25. Elevator control surface behavior estimated via LSM 
 

With this graph created in the time domain obtained, the approach of the least 

squares method used with the original form of the transfer function is seen. 
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4.4.1.3.1.2. Aileron control surfaces behavior via LSM 

 

After examining the transfer function resulting from the longitudinal motion of 

an aircraft, transfer functions resulting from the lateral motion of an aircraft will 

be examined. Firstly, the transfer function, which is the ratio of the bank angle 

resulting from the behavior of the aileron control surface to the aileron 

displecement, is discussed. Here again, the transfer functions previously found in 

the mathematical modeling section will be used. Least squares method will be 

applied using previously found Equation (3.72) and (3.73) or Equation (3.74). In 

order to run the algorithm of the least squares method created in the 

MATLAB/Simulink program, a model was created as shown in Figure 4.26, which 

also provides the input of the original data. 

 

 
 

Figure 4.26. MATLAB/Simulink model for aileron control surface 
 

Below is given the transfer function, which is the ratio of the bank angle to aileron 

displacement, first created with the original data in Equation (4.25). 
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(
𝜙

𝛿𝑎
)

𝑂𝑅𝐽

=
26.8666𝑠2 + 0.4725𝑠 + 94.0527

𝑠4 + 1.8683𝑠3 + 3.6856𝑠2 + 6.2648𝑠 − 0.0085
 

(4.25) 

 

When the model in Figure 4.26 and the algorithm created in the MATLAB 

program are run, the estimated transfer function obtained by the least squares 

method is obtained in Equation (4.26) below. 

 

(
𝜙

𝛿𝑎
)

𝐿𝑆𝑀

=
26.8666𝑠2 + 0.4721𝑠 + 94.0737

𝑠4 + 1.8683𝑠3 + 3.6856𝑠2 + 6.2649𝑠 − 0.0087
 

(4.26) 

 

Thus, the from bank angle to aileron displacement ratio transfer function 

resulting from the lateral motion of an aircraft was estimated by the least squares 

method. The graph in Figure 4.27 was again created in the MATLAB/Simulink 

program in order to see the graphical comparison of both transfer functions by 

using the original transfer function and the transfer function estimated by the 

least squares method. 

 

 
 

Figure 4.27. Aileron control surface behavior estimated via LSM 
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With this graph created in the time domain obtained, the approach of the least 

squares method used with the original form of the transfer function is seen. 

 

4.4.1.3.1.3. Rudder control surfaces behavior via LSM 

 

Again, the transfer function resulting from the behavior of the rudder control 

surface resulting from the lateral motion of an aviator will be examined. The least 

squares method was applied by using Equation (3.72) and (3.73) or (3.76) 

expressions in the mathematical modeling section. In order to run the algorithm 

of the least squares method created in the MATLAB/Simulink program, a model 

was created as shown in Figure 4.28, which also provides the input of the original 

data. 

 

 
 

Figure 4.28. MATLAB/Simulink model for rudder control surface 
 

Below is given the transfer function, which is the ratio of the bank angle to aileron 

displacement, first created with the original data in Equation (4.27). 
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(
𝜙

𝛿𝑟
)

𝑂𝑅𝐽

=
0.5749𝑠2 − 0.2124𝑠 − 4.2481

𝑠4 + 1.8683𝑠3 + 3.6856𝑠2 + 6.2648𝑠 − 0.0085
                 (4.27) 

 

When the model in Figure 4.28 and the algorithm created in the MATLAB 

program are run, the estimated transfer function obtained by the least squares 

method is obtained in Equation (4.28) below. 

 

(
𝜙

𝛿𝑟
)

𝐿𝑆𝑀

=
0.5749𝑠2 − 0.2128𝑠 − 4.2263

𝑠4 + 1.8678𝑠3 + 3.6850𝑠2 + 6.2636𝑠 − 0.0031
                 (4.28) 

 

Thus, the from bank angle to rudder displacement ratio transfer function 

resulting from the lateral motion of an aircraft was estimated by the least squares 

method. The graph in Figure 4.29 was again created in the MATLAB/Simulink 

program in order to see the graphical comparison of both transfer functions by 

using the original transfer function and the transfer function estimated by the 

least squares method. 

 

 
 

Figure 4.29. Rudder control surface behavior estimated via LSM 
 

With this graph created in the time domain obtained, the approach of the least 

squares method used with the original form of the transfer function is seen. 
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4.4.2. Online estimation 

 

Estimate the parameters of a model when new data is available during the 

operation of the model. Offline parameter estimation techniques were applied 

after the flight after data collection was completed. These are parameter 

estimation methods that give intermediate results when new data is received 

during the flight and during the experiment, that is, during data collection. It 

enables parameter estimates to be calculated in real time without the need to 

process the entire data set as additional measurements are added. It is also 

advantageous in terms of specifying model structure inadequacy and / or 

identifiability problems through time variations in parameter estimates and 

error boundaries. It is a stronger type of parameter estimation method in terms 

of monitoring parameters that change over time (Klein and Morelli, 2006). 

 

4.4.2.1. Recursive least square method 

 

It is an iterative least squares method used as a real time parameter estimation 

method. It is similar to the least squares method in general logic. It differs from 

the least squares method in that it is a method that can get results in real time, 

that is, during the experiment. Because in the least squares method, the process 

starts after the data is completely collected, and if a new data is received after 

data collection is completed, the parameter estimation is made from the first data 

again. However, the part that makes this method advantageous is that when new 

data arrives, it is not necessary to do all the operations from the beginning, and 

the last incoming data is processed. The general mentality of the recursive least 

squares method prevents the rework of old data, making the procedure efficient 

for real-time processing. Thus, it can be applied more conveniently to aircraft 

systems with variable dynamics with the recursive least squares method, which 

is a real time parameter estimation. With this method, the unknown parameters 

will be estimated, as is done in the least squares method. While doing this, the 

algorithm, which is similar to the algorithm of the least squares method but has 

some differences due to its repetition, will be explained. The recursive least 

squares method makes real-time estimates according to the least squares 
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method. The data flow can be fast and the data model can change instantaneously 

due to the dynamic nature of an aircraft system. Therefore, it is more convenient 

to update the prediction of the previous unknown parameters 𝜃 (𝑘) for the new 

row of data than to re-analyze all data for each future data.  𝜃 (𝑘)  estimation 

process in Equation (4.18) was specified above with the least squares method. 

Now, the approach and algorithm of the recursive least squares method will be 

explained below in case of recursively new data. . While explaining the algorithm 

of the RLS method, the 𝑘 index, which is also used in the description of the LS 

method, is used. 𝑘 index represents the number of data lines. While describing 

the LS method, assuming that there are 𝑘 data lines, the result of the unknown 

parameters was expressed in Equation (4.18). Now assuming that new 

measurements are made, that is, when a new data arrives in 𝑘 rows of data, the 

function 𝐽𝑘 in Equation (4.16) will be updated to (𝑘 +  1), 𝑢 (𝑘 +  1) and 𝑦 (𝑘 +

 1) and the expression in Equation (4.29) will appear. Thus, in the light of these 

mentioned situations, how the RLS method will be applied and what kind of an 

algorithm it has will be explained below. 

 

𝐽𝑘+1 = ∑[𝑦(𝑖) − 𝜃𝑇(𝑘 + 1)𝜙(𝑖 − 1)]2
𝑘+1

𝑖=1

 

 

(4.29) 

Thus, the updated version of the parameter matrix in Equation (4.18) found with 

the LS method above is expressed in Equation (4.30) below. 

 

𝜃 (𝑘 + 1) = 𝐹(𝑘 + 1) ∑ 𝜙(𝑖 − 1)𝑦(𝑖)

𝑘+1

𝑖=1

 

 

(4.30) 

where 

 

𝐹(𝑘 + 1) = [∑ 𝜙(𝑖 − 1)𝜙𝑇(𝑖 − 1)

𝑘+1

𝑖=1

]

−1

 

 

From Equation (4.16), the following Equation (4.31). 
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∑𝜙(𝑖 − 1)𝑦(𝑖)

𝑘

𝑖=1

= 𝐹(𝑘)−1𝜃 (𝑘)                 (4.31) 

 

From Equation (4.30), the following Equation (4.32) is expressed. 

 

∑ 𝜙(𝑖 − 1)𝑦(𝑖)

𝑘+1

𝑖=1

= ∑𝜙(𝑖 − 1)𝑦(𝑖)

𝑘

𝑖=1

+ 𝜙(𝑘)𝑦(𝑘 + 1)                 (4.32) 

 

Equation (4.30) according to the expression in Equation (4.32) is expressed as in 

Equation (4.33) as follows. 

 

𝜃(𝑘 + 1) =  𝐹(𝑘 + 1)[𝐹(𝑘)−1𝜃 (𝑘) + 𝜙(𝑘)𝑦(𝑘 + 1)                 (4.33) 

 

The 𝐹(𝑘)  expression previously explained is stated below to remind you again. 

 

𝐹(𝑘) = [∑𝜙(𝑖 − 1)𝜙𝑇(𝑖 − 1)

𝑘

𝑖=1

]

−1

 

 

𝐹(𝑘) expression contains 𝐹(𝑘)−1 as seen in Equation (4.34) as below. 

 

𝐹(𝑘)−1 = ∑𝜙(𝑖 − 1)𝜙𝑇(𝑖 − 1)

𝑘

𝑖=1

                 (4.34) 

 

According to the expression found in Equation (4.34), the expression 𝐹(𝑘 + 1)−1 

is expressed in Equation (4.35) as follows. 

 

𝐹(𝑘 + 1)−1 = ∑ 𝜙(𝑖 − 1)𝜙𝑇(𝑖 − 1)

𝑘+1

𝑖=1

= 𝐹(𝑘)−1 + 𝜙(𝑘)𝜙𝑇(𝑘)                (4.35) 

 

Thus, 𝐹(𝑘)−1 expression is found as in Equation (4.36). 
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𝐹(𝑘)−1 = 𝐹(𝑘 + 1)−1 − 𝜙(𝑘)𝜙𝑇(𝑘) (4.36) 

 

Thus, Equation (4.33) is updated as follows in Equation (4.37) and (4.38)  as a 

result of the expressions stated above. 

 

𝜃(𝑘 + 1) =  𝐹(𝑘 + 1)[(𝐹(𝑘 + 1)−1 − 𝜙(𝑘)𝜙𝑇(𝑘))𝜃 (𝑘) + 𝜙(𝑘)𝑦(𝑘 + 1)]           (4.37) 

  

𝜃(𝑘 + 1) =  𝜃 (𝑘) + 𝐹(𝑘 + 1)𝜙(𝑘)[𝑦(𝑘 + 1) − 𝜃𝑇 (𝑘)𝜙(𝑘)]                (4.38) 

 

Therefore,  𝜃(𝑘 + 1) = 𝜃(𝑘) + [𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚], the expressions in correction 

terms are gain and error. Where 𝑔𝑎𝑖𝑛 =  𝐹(𝑘 + 1)𝜙(𝑘) and 𝑒𝑟𝑟𝑜𝑟 = 𝑦(𝑘 + 1) −

𝜃𝑇 (𝑘)𝜙(𝑘) . Then Express Equation (4.39) from equation (4.36) to express 

𝐹(𝑘 + 1) iteratively. 

 

𝐹(𝑘 + 1) = [𝐹(𝑘)−1𝜙(𝑘)𝜙𝑇(𝑘)]−1  (4.39) 

 

Then Equation (4.40) is then expressed using the Matrix Inversion Lemma rule 

for Equation (4.39). 

 

𝐹(𝑘 + 1) = 𝐹(𝑘) − 𝐹(𝑘)𝜙(𝑘)[𝜙𝑇(𝑘)𝐹(𝑘)𝜙(𝑘) + 𝐼]−1𝜙𝑇(𝑘)𝐹(𝑘)   (4.40) 

 

Thus 𝐹 (𝑘 +  1) can be expressed in the form in Equation (4.41) as follows. 

𝐹(𝑘 + 1) = 𝐹(𝑘) −
𝐹(𝑘)𝜙(𝑘)𝜙𝑇(𝑘)𝐹(𝑘)

1 + 𝜙𝑇(𝑘)𝐹(𝑘)𝜙(𝑘)
 

  

(4.41) 

Finally, Equation (4.38) is updated like 𝜃(𝑘 + 1) in Equation (4.42). 

 

𝜃̂(𝑘 + 1)  = 𝜃̂ (𝑘) + [
𝐹(𝑘)𝜙(𝑘)𝜙𝑇(𝑘)𝐹(𝑘)

1 + 𝜙𝑇(𝑘)𝐹(𝑘)𝜙(𝑘)
]𝜙(𝑘)[𝑦(𝑘 + 1) − 𝜃̂𝑇 (𝑘)𝜙(𝑘)] 

  

(4.42) 

Thus, the unknown parameters were found by applying the algorithm logic of the 

RLS method. With this method, as explained above, the method and logic applied 

according to the new line of data are expressed. 
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After the expression of the parameter matrix is found, the Matrix Inversion 

Lemma method used when passing from Eqauation (4.39) to Equation (4.40) 

expression is also expressed below. 

 

Matrix Inversion Lemma: if 𝐴  is nonsingular, 𝐵  and 𝐶  have compatible 

dimensions, then 

 

(𝐴 + 𝐵𝐶)−1 = 𝐴−1 − 𝐴−1𝐵(𝐶𝐴−1𝐵 + 𝐼)−1𝐶𝐴−1 

 

4.4.2.1.1. Estimation of Aircraft Control Surfaces Behavior via RLSM 

 

Previously, the estimation of transfer functions resulting from the behavior of 

aircraft control surfaces was carried out using the least squares method. In this 

section, transfer functions arising from the behavior of aircraft control surfaces 

will be analyzed using the recursive least squares method, and a comparison with 

the original data and graphical results will be presented. In this context, as in the 

LS method, examinations were carried out in all three control surfaces in this 

method. Here again, the original forms of the transfer functions to be obtained in 

the estimation process were created according to the flight data in the Howe 

lecture notes (Howe, 1980). 

 

4.4.2.1.1.1. Elevator control surfaces behavior via RLSM 

 

First, we started with the transfer function, which again results from the behavior 

of the elevator control surface. The formation process of the transfer function is 

expressed in the mathematical modeling part, as it is also mentioned in the LS 

method. This situation, which occurs as a result of the longitudinal motion of an 

aircraft, has been described before. The pitch transfer function in Equation (3.52) 

and (3.53) or (3.54) will be estimated by the least squares method. In order to 

run the algorithm of the least squares method created in the MATLAB/Simulink 

program, a model was created as shown in Figure 4.30, which also provides the 

input of the original data. 
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Figure 4.30. MATLAB/Simulink model for elevator control surface 
 

Below, the pitch transfer function created with the original data is given in 

Equation (4.43). 

 

(
𝜃

𝛿𝑒
)
𝑂𝑅𝐽

=
−24.7885𝑠2 − 18.2186𝑠 − 0.4659

𝑠4 + 2.0072𝑠3 + 32. 5269𝑠2 + 0.8638𝑠 + 0.0179
                 (4.43) 

 

When the model in Figure 4.30 and the algorithm created in the MATLAB 

program are run, the estimated transfer function obtained by the least squares 

method is obtained in Equation (4.44) below. 

 

(
𝜃

𝛿𝑒
)
𝑅𝐿𝑆𝑀

=
−24.7885𝑠2 − 18.2191𝑠 − 0.4429

𝑠4 + 2.0072𝑠3 + 32. 5269𝑠2 + 0.8639𝑠 + 0.0178
                 (4.44) 

 

Therefore, the pitch transfer function resulting from the longitudinal motion of 

an airaircraft was estimated by the recursive least squares method. The graph in 

Figure 4.31 was again created in the MATLAB/Simulink program to see the 
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graphical comparison of both transfer functions using the original transfer 

function and the transfer function estimated by the recursive least squares 

method. 

 

 
 

Figure 4.31. Elevator control surface behavior estimated via RLSM 
 

With this graph created in the time domain obtained, the approach of the 

recursive least squares method used with the original form of the transfer 

function is seen. 

 

4.4.2.1.1.2. Aileron control surfaces behavior via RLSM 

 

After the transfer function estimation due to the longitudinal motion of an aircraft 

is performed, the estimation of the transfer functions resulting from the lateral 

motion of an aircraft will also be performed. First, the transfer function, which is 

the ratio of the angle of bank resulting from the behavior of the blade control 

surface to the blade displacement, is investigated. Here again, the transfer 

functions previously found in the mathematical modeling section will be used. 

Recursive Least Squares Method will be applied using the previously found 

Equations (3.72) and (3.37) or Equation (3.74). In order to run the algorithm of 
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the recursive least squares method created in the MATLAB/Simulink program, a 

model was created as shown in Figure 4.32, which also provides the input of the 

original data. 

 

 
 

Figure 4.32. MATLAB/Simulink model for aileron control surface 
 

Below is given the transfer function, which is the ratio of the bank angle to aileron 

displacement, first created with the original data in Equation (4.45). 

 

(
𝜙

𝛿𝑎
)

𝑂𝑅𝐽

=
26.8666𝑠2 + 0.4725𝑠 + 94.0527

𝑠4 + 1.8683𝑠3 + 3.6856 + 6.2648𝑠 − 0.0085
                 (4.45) 

 

When the model in Figure 4.32 and the algorithm created in the MATLAB 

program are run, the estimated transfer function obtained by the least squares 

method is obtained in Equation (4.46) below. 

 

(
𝜙

𝛿𝑎
)

𝑅𝐿𝑆𝑀

=
26.8666𝑠2 + 0.4722𝑠 + 94.0603

𝑠4 + 1.8683𝑠3 + 3.6856 + 6.2648𝑠 − 0.0085
                 (4.46) 
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Thus, the from bank angle to aileron displacement ratio transfer function 

resulting from the lateral motion of an aircraft was estimated by the recursive 

least squares method. The graph in Figure 4.33 was again created in the 

MATLAB/Simulink program in order to see the graphical comparison of both 

transfer functions by using the original transfer function and the transfer 

function estimated by the recursive least squares method. 

 

 
 

Figure 4.33. Aileron control surface behavior estimated via RLSM 
 

With this graph created in the time domain obtained, the approach of the 

recursive least squares method used with the original form of the transfer 

function is seen. 

 

4.4.2.1.1.3. Rudder control surfaces behavior via RLSM 

 

Again, the transfer function resulting from the behavior of the rudder control 

surface resulting from the lateral motion of an aviator will be examined. The 

recursive least squares method was applied by using Equation (3.72) and (3.73) 
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or (3.76) expressions in the mathematical modeling section. In order to run the 

algorithm of the recursive least squares method created in the MATLAB/Simulink 

program, a model was created as shown in Figure 4.34, which also provides the 

input of the original data. 

 

 
 

Figure 4.34. MATLAB/Simulink model for rudder control surface 
 

Below is given the transfer function, which is the ratio of the bank angle to aileron 

displacement, first created with the original data in Equation (4.47). 

  

(
𝜙

𝛿𝑟
)

𝑂𝑅𝐽

=
0.5749𝑠2 − 0.2124𝑠 − 4.2481

𝑠4 + 1.8683𝑠3 + 3.6856𝑠2 + 6.2648𝑠 − 0.0085
                 (4.47) 

 

When the model in Figure 4.34 and the algorithm created in the MATLAB 

program are run, the estimated transfer function obtained by the least squares 

method is obtained in Equation (4.48) below. 

 

(
𝜙

𝛿𝑟
)

𝑅𝐿𝑆𝑀

=
0.5749𝑠2 − 0.1868𝑠 − 4.2416

𝑠4 + 1.868𝑠3 + 3.6859𝑠2 + 6.2648𝑠 − 0.0082
                 (4.48) 
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Thus, the from bank angle to rudder displacement ratio transfer function 

resulting from the lateral motion of an aircraft was estimated by the recursive 

least squares method. The graph in Figure 4.34 was again created in the 

MATLAB/Simulink program in order to see the graphical comparison of both 

transfer functions by using the original transfer function and the transfer 

function estimated by the recursive least squares method. 

 

 
 

Figure 4.35. Rudder control surface behavior estimated via RLSM 
 

With this graph created in the time domain obtained, the approach of the 

recursive least squares method used with the original form of the transfer 

function is seen. 

 

Thus, the transfer functions resulting from the behavior of all three control 

surfaces were estimated by using the recursive least squares method as well as 

the least squares method. 
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4.4.2.2. Time-varying parameter 

 

Other online parameter estimation methods are time varying parameter 

estimation methods. they are applied when the parameters change over time. ie 

the parameters are not fixed, they are used when the model parameters change 

over time. To express these methods, a few changes have been made in the 

algorithm of the recursive least square method, which is the online parameter 

estimation method described earlier. These methods are briefly discussed below. 

 

4.4.2.2.1. Exponentially Weighted Least Squares 

 

In this method, the model parameters do not remain constant but gradually 

change according to a determined weight over time. The general function of this 

method is expressed as follows in (4.49). 

  

𝐽(𝜃) = 0.5 ∑ 𝜆𝑘−𝑖[𝑧(𝑖) − 𝑥𝑇(𝑖)𝜃]2
𝑘

𝑖=𝑘−𝑚

                 (4.49) 

 

Where 𝑚  refers to the number of past values weighted with the tops of the 𝜆 

value in the data set. The aim is to minimize this function. The algorithm to be 

created minimizes the result of the function, which is our goal. The algorithm of 

this method is expressed by developing the algorithm of the recursive least 

square method described in (4.50) to (4.52). 

 

𝜃𝑘+1 = 𝜃𝑘𝐾𝑘+1[𝑧𝑘+1 − 𝑋𝑘+1
𝑇𝜃𝑘]                                                                                 (4.50) 

 

𝐾𝑘+1 = 𝑃𝑘𝑥𝑘+1(𝜆 + 1 + 𝑥𝑘+1
𝑇𝑃𝑘𝑥𝑘+1)

−1                                                                  (4.51) 

 

𝑃𝑘+1 =
1

𝜆
[𝑃𝑘−𝑃𝑘𝑥𝑘+1(𝜆 + 𝑥𝑘+1

𝑇𝑃𝑘𝑥𝑘+1)
−1𝑥𝑘+1

𝑇𝑃𝑘]                                              (4.52) 

 

Therefore 𝜃𝑘+1, 𝐾𝑘+1 and 𝑃𝑘+1 expressions are updated. 
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4.4.2.2.2. Kalman filter 

 

In a dynamic system represented by the state space model, it is the filter that can 

predict the state of the system from the input and output information together 

with the previous information of the model. Although it is named as a filter; an 

algorithm that predicts the next state of the system based on previous states. It 

also allows you to estimate as close to reality as possible from noisy and 

imprecise data. In Figure 4.36 shows the working mechanism of the kalman filter. 

In general the algorithm of Kalman filter (4.53) to (4.68) is described. 

  

 
 

Figure 4.36 Kalman filter (Charles, et al.  2008) 
 

Kalman filters are used to predict states based on dynamical systems in the form 

of state spaces. The process model defines the progress of the state from time 𝑘 −

1 to time 𝑘 as: 

 

𝜃𝑘 = 𝛷𝑘−1𝜃𝑘−1 + 𝑤𝑘−1                                                                                                   (4.53) 

 

where 𝛷𝑘−1 state transition matrix applied to vector 𝜃𝑘−1 , 𝑤𝑘−1  is the noise 

vector and 𝐸  denotes expected value. The relationship between k states and 

measurements in the current time step is matched with the measurement model 

described as: 

 

𝑧𝑘 = 𝑥𝑇
𝑘𝜃𝑘 + 𝑣𝑘                                                                                                               (4.54) 
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where 𝑧𝑘 is the measurement vector, 𝑋 is the measurement matrix, and 𝑣𝑘 is the 

measurement noise vector. 

 

𝐸[𝑤𝑘𝑤
𝑇

𝐼 ] = 𝑄𝑘𝛿𝑘𝑙 

 

𝐸[𝑣𝑘𝑣𝐼 ] = 𝜎2𝛿𝑘𝑙                                                                                                               (4.55)      

 

𝜃𝑘\𝑘−1 = 𝛷𝑘−1𝜃(𝑘−1\𝑘−1)                                                                                                (4.56)   

    

𝑃𝑘\𝑘−1 = 𝛷𝑘−1𝑃(𝑘−1\𝑘−1)𝛷𝑘−1
𝑇 + 𝑄𝑘−1                                                                     (4.57)  

 

𝜃𝑘\𝑘 = 𝜃(𝑘\𝑘−1) + 𝐾𝑘[𝑧𝑘 − 𝑥𝑇
𝑘𝜃𝑘\𝑘−1]                                                                       (4.58) 

 

𝑃𝑘\𝑘 = [𝐼 − 𝐾𝑘𝑥
𝑇

𝑘]𝑃𝑘\𝑘−1                                                                                              (4.59) 

 

𝐾𝑘 = 𝑃𝑘\𝑘−1𝑥𝑘[𝑥
𝑇

𝑘𝑃𝑘\𝑘−1𝑥𝑘 + 𝜎2
𝑘]

−1                                                                       (4.60) 

 

Where 𝑃 state covariance matrix, state vector of the kalman filter in this case is 

the parameter vector θ, 𝑄 noise covariance matrix and 𝜎2noise covariance are 

constant. 𝛷𝑘 = 𝐼 is implemented to simplify the algorithm. 

 

𝜃𝑘 = 𝜃𝑘−1 + 𝑤𝑘−1                                                                                                             (4.61) 

 

Thus, Kalman filter equations are expressed as follows. 

 

𝜃(𝑘\𝑘−1) = 𝜃(𝑘−1\𝑘−1) = 𝜃𝑘−1                                                                                        (4.62) 

 

𝑃𝑘\𝑘−1 = 𝑃𝑘−1\𝑘−1 + 𝑄                                                                                                    (4.63) 

 

𝜃𝑘 = 𝜃𝑘−1 + 𝐾𝑘[𝑧𝑘 − 𝑥𝑇
𝑘𝜃𝑘−1]                                                                                    (4.64)    

 

𝑃𝑘\𝑘 = [𝐼 − 𝐾𝑘𝑥
𝑇

𝑘]𝑃𝑘\𝑘−1                                                                                              (4.65)   
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𝐾𝑘 = 𝑃𝑘\𝑘−1𝑥𝑘[𝑥
𝑇

𝑘𝑃𝑘\𝑘−1𝑥𝑘 + 𝜎2
𝑘]

−1                                                                       (4.66)   

 

If  𝑤𝑘 = 0 and 𝑄 = 0, state model is 

 

𝜃𝑘 = 𝜃𝑘−1                                                                                                                            (4.67)   

 

𝑃𝑘\𝑘−1 = 𝑃𝑘−1\𝑘−1 = 𝑃𝑘−1                                                                                              (4.68)   

 

4.4.2.2.3. Sequential least square 

 

The least square solution applied the function in Equation (4.49) the result is as 

follows in (4.69) to (4.74). 

 

𝜃𝑘 = [𝑀𝑘𝜆
]−1𝑆𝑘𝜆

                                                                                                               (4.69)  

 

𝐶𝑜𝑣[𝜃𝑘] = 𝜎2[𝑀𝑘𝜆
]−1                                                                                                      (4.70) 

 

𝑀𝑘𝜆
= ∑ 𝜆𝑘−𝑖𝑘

𝑖=𝑘−𝑚 𝑥𝑖𝑥𝑖
𝑇                                                                                                (4.71) 

 

𝑆𝑘𝜆
= ∑ 𝜆𝑘−𝑖𝑘

𝑖=𝑘−𝑚 𝑥𝑖𝑧𝑖                                                                                                    (4.72) 

 

𝑀𝑘𝜆
 and 𝑆𝑘𝜆

are updated recursively and expressed as follows. 

 

𝑀𝑘𝜆
= 𝜆𝑀(𝑘−1)𝜆

+ 𝑥𝑘𝑥𝑘
𝑇                                                                                                (4.73) 

 

𝑆𝑘𝜆
= 𝜆𝑆(𝑘−1)𝜆

+ 𝑥𝑘𝑧𝑘                                                                                                     (4.74) 

 

4.4.3. Comparison of parameter estimation via RLSM and LSM 

 

The parameter estimation methods used for parameter estimation, offline and 

online, and the general mentality of the use of estimation operations with these 

methods have been expressed in the above sections. Two methods frequently 
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used in these, namely RLS and LS methods, were emphasized and samples were 

carried out within the framework of estimation of transfer functions resulting 

from the behavior of an aircraft control surfaces with both methods. Once again, 

offline methods were non-real-time methods. In other words, they are the 

methods used after data analysis is completed after the flight is completed. Online 

methods, on the other hand, are methods that are used in real time and can be 

used for any new data that may come during flight. In this section, the online 

parameter estimation method RLS was compared with the offline parameter 

estimation method LS in parallel with the above. While comparing these two 

methods, graphically overlapping outputs were drawn in MATLAB/Simulink 

program and analyzed.  

 

Firstly, the comparison process was started with the pitch transfer function 

generated as a result of the behavior of the elevator control surface. This transfer 

function has previously been done with both methods. Now, in order to see the 

accuracy of the methods with each other, the overlapping process in Figure 4.37 

has been performed. 
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Figure 4.37 Estimated via RLSM and LSM (𝜃/𝛿𝑒) 
 

Thus, estimate graphic obtained by both methods was created. For this pitch 

transfer function, which is also examined in terms of providing information about 

the transferred functions or the system, the pole zero map has been extracted as 

the original form, obtained by LS and RLS methods. This pole zero map is given 

in Figure 4.38 below. 
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Figure 4.38 Pole zero map for pitch transfer function 
 

Now, the transfer functions resulting from the behavior of the aileron and rudder 

control surfaces resulting from the lateral motion of an aircraft are compared 

with both methods. First of all, the transfer function resulting from the behavior 

of the aileron control surface for the lateral motion with both methods is given in 

Figure 4.39 below. 
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Figure 4.39 Estimated via RLSM and LSM (𝜙/𝛿𝑎) 
 

Pole zero map has been extracted as the original forms obtained by LS and RLS 

methods for the transfer function, which is the ratio of this bank angle to aileron 

displacement, which is also examined in terms of providing information about 

the transferred functions or the system examined after the estimated graphs. This 

pole zero map is given in Figure 4.40 below. 
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Figure 4.40 Pole zero map for bank angle to aileron displacement 
 

Likewise, the transfer function resulting from the behavior of the rudder control 

surface resulting from the lateral motion of an aircraft is graphically plotted 

graphically with both methods, as shown in Figure 4.41 below. 

 

 
 

Figure 4.41 Estimated via RLSM and LSM (𝜙/𝛿𝑟) 
 



83 

Likewise, for the transfer function, which is the ratio of this bank angle to rudder 

displacement, which is examined in terms of providing information about the 

transfer functions or the system examined here, the pole zero map has been 

extracted as the original forms obtained by LS and RLS methods. This pole zero 

map is given in Figure 4.42 below. 

 

 
 

Figure 4.42 Pole zero map for bank angle to rudder displacement 
 

Thus, the unknown parameters in the transfer functions of the aircraft control 

surfaces were analyzed in time domain by both methods and the transfer 

functions generated by the new parameters as a result of the estimation were 

specified. In addition, simulations expressing the result obtained when compared 

with the original transfer functions of estimation methods examined in 

MATLAB/Simulink program are shown. In addition to the graphical simulations 

obtained, it has been given in pole zero maps obtained in MATLAB/Simulink 

program in order to give information about the systems or the analyzed transfer 

functions. As a result of simulations, the integral square erros (ISE) table was 

created in order to observe the error difference of both methods according to the 
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original data and which method is closer to the original data. the result is given 

in the Table 4.1. ISE is the statistical information used to see the errors created 

by integrating the square of the system error throughout the fixed time interval 

to obtain information about the performance of the systems created. 

 

Table 4.1 ISE table for LSM and RLSM 
 

Parameter 

Estimation Methods 

Elevator Control 

Surface (ISE) 

Aileron Control 

Surface (ISE) 

Rudder Control 

Surface (ISE) 

LSM 0.0001386 0.00009236 0.0003527 

RLSM 0.0001354 0.0000348 0.000117 
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5. ESTIMATION OF DOMINANT PARAMETERS VIA LSM AND 

RLSM 

 

Many parameter estimation methods were mentioned above, LS and RLS 

methods were discussed in detail and various analyzes were performed. With 

both methods, the process of estimating transfer functions extracted according 

to the behavior of aircraft control surfaces is explained. In this part, the 

realization process of the estimation of some dominant parameters used in the 

formation of the transfer functions described and predicted in the above sections 

will be explained. The dominant parameters estimated here are the parameters 

of a linear dynamic aircraft model. While finding these aerodynamic parameters, 

they were compared with the actual aircraft parameters used in the formation of 

the originally determined transfer functions, and the error rates of the estimated 

parameters found by both methods were extracted. The parameters studied and 

tried to be predicted were specified in chapter 3 in the mathematical modeling 

section during the extraction of transfer functions. Under this chapter, the 

mathematical explanation of the equations of motion of a linear dynamical 

aircraft model is expressed and finally, the environment that serves to express 

some transfer functions has been created by applying the linearization process to 

these equations. Thus, the prediction of the dominant aerodynamic parameters 

specified in Equation (3.47), which is expressed from linearized aircraft motion 

equations, has been realized. In the mathematical operations performed in the 

process of finding parameters, transfer functions estimated by both methods are 

used. The parameters were tried to be found by using the Equation (3.52), (3.53) 

and (3.56) transfer functions specified in the chapter of mathematical modeling. 

In other words, when finding the parameters, both the pitch transfer function and 

the transfer function, which is the ratio of the angle of attack to elevator 

displacement, are used. As a result of the mathematical operations performed on 

these transfer functions, the parameters are estimated. After the transfer 

functions used were estimated with LS and RLS methods, the process of finding 

the dominant parameter was started. 
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5.1. Estimation Dominant Parameters via LSM 

 

As explained at the beginning of chapter, the process of finding these parameters 

was carried out by both methods. First, the realization process was carried out 

with the LS method. Subsequently, the original and estimated versions of the 

parameters found as a result of this method are expressed. In this chater, firstly, 

the transfer function in Equation (4.24) estimated by LS method is processed. 

This transfer function is the pitch transfer function created as a result of the 

longitudinal movement of an aircraft. The formation process of this transfer 

function has been described in the chapters above. In the above operations, this 

transfer function was estimated using the LS method. In this section, the basic 

dominant parameters, which are also stated in Equation (3.47), are tried to be 

estimated in the formation of this transfer function. While performing the 

estimate operation, was started with the transfer function given in Equation 

(4.24). However, as observed in the process, there was a difference between the 

number of equations created and the number of unknown parameters. Since the 

number of equations obtained here is less than the number of unknown 

parameters, a result could not be reached. Therefore, the transfer function, which 

is the ratio of angle of attack to elevator displacement, again resulting from the 

longitudinal motion of an aircraft, is discussed. In this transfer function, the 

formation process is explained as in the pitch transfer function. Equation (3.56), 

which is fully expressed parametrically, is also given. For this reason, before 

working with this transfer function, estimation was performed with the LS 

method, as in the other chapters. Thus, before starting the dominant parameter 

process, estimation process with LS method is explained in the transfer function, 

which is the ratio of the angle of attack to elevator displacement. 

 

For the estimation process, the model prepared in the MATLAB/Simulink 

program is given in this transfer function, as shown in Figure 5.1. This model has 

been implemented differently than the other model used, due to the large number 

of parameters. Also in the MATLAB program, the algorithm of the LS method is 

set to estimate the transfer function, which is the ratio of angle of attack to 

elevator displacemet. 



87 

 

 

Figure 5.1 MATLAB/Simulink model for 𝛼/𝛿𝑒 
 

After the model has been created, the transfer function, which is the ratio of the 

angle of attack to the elevator displacement, is given in Equation (5.1) below for 

the demonstration of the estimation process, created with the original data. 

  

(
𝛼

𝛿𝑒
)
𝑂𝑅𝐽

=
0.0515𝑠3 − 23.4487𝑠2 − 0.621𝑠 − 0.0128

𝑠4 + 2.0072𝑠3 + 32.5269𝑠2 + 0.8638𝑠 + 0.0179
                   (5.1) 

 

When the model in Figure 5.1 and the algorithm created in the MATLAB program 

are run, the estimated transfer function obtained by the least squares method is 

obtained in Equation (5.1-2) below. 

 

(
𝛼

𝛿𝑒
)
𝐿𝑆𝑀

=
0.0515𝑠3 − 23.4487𝑠2 − 0.6212𝑠 + 0.013572

𝑠4 + 2.0071𝑠3 + 32.527𝑠2 + 0.8641𝑠 + 0.0178
                   (5.2) 

 

Since there is an estimated transfer function, the process of finding the dominant 

parameters can be started. There are two mathematically obtained transfer 

functions obtained by LS method. Thus, the number of equations has been 

increased by the number of unknown parameters. By using these two transfer 
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functions, solutions are obtained with equation solve commands in the MATLAB 

program. Thus, below, the values of the dominant parameters originally used and 

the values found as a result of the estimation process are given in Table 5.1. 

 

Table 5.1 Estimated parameters via LSM 
 

Parameters Original Values Estimated via LSM 

𝐶𝐿 0.0642 0.0644 

𝐶𝐷 0.0514 0.0486 

𝐶𝑀𝛼
 -0.4 -0.4144 

𝐶𝑀𝛼̇
 -2 -1.9218 

𝐶𝐿𝛼
 3 2.974 

𝐶𝑀𝛿𝑒
 -0.3 -0.32 

𝐶𝐿𝛿𝑒
 0.2 0.2008 

 

Thus, the dominant parameters obtained have been found. Now the error table 

has been extracted to see to what extent the parameters approached the original 

values. this table is given in Table 5.2. 

 

Table 5.2 Error table for parameters via LSM 
  

Parameters Error Rates 

𝐶𝐿 0.00311 

𝐶𝐷 0.0545 

𝐶𝑀𝛼
 0.0360 

𝐶𝑀𝛼̇
 0.0391 

𝐶𝐿𝛼
 0.0087 

𝐶𝑀𝛿𝑒
 0.066 

𝐶𝐿𝛿𝑒
 0.004 

 

5.2. Estimation Dominant Parameters via RLSM 

 

After the dominant parameters were found with the LS method, the same process 

was applied this time for the RLS method. Here again, estimated pitch transfer 

function and transfer function, which is the ratio of angle of attack to elevator 

displacement, are used. The processes described above in chapter 5.1 are also 
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applied here. Again, the process was first started by using the RLS method 

estimated using the pitch transfer function given in Equation (4.44). Then, after 

the use of the transfer function, which is the ratio of the angle of attack to elevator 

displacement, this transfer function was tried to be estimated by using the RLS 

method. While performing the estimate process, Figure 5.1 is used here, as in the 

LS method. Also here, with the model, the algorithm of the RLS method was 

created in the MATLAB program. Before proceeding to the domiant parameter 

finding process, the estimate operation of the transfer function, which is the ratio 

of the angle of attack to the elevator displacement, created with the original data 

given in Equation (5.1), was performed with the RLS method. The estimate 

operation was performed after running the model in Figure 5.1 and the algorithm 

created in the MATLAB program. Its estimated form is given below in Equation 

(5.3). 

 

(
𝛼

𝛿𝑒
)
𝑅𝐿𝑆𝑀

=
0.0515𝑠3 − 23.4487𝑠2 − 0.6214𝑠 + 0.0135725

𝑠4 + 2.0072𝑠3 + 32.5269𝑠2 + 0.8638𝑠 + 0.0179
                   (5.3) 

 

Since there is an estimated transfer function, the process of finding the dominant 

parameters can be started. There are two mathematically obtained transfer 

functions obtained by RLS method. Thus, the number of equations has been 

increased by the number of unknown parameters. By using these two transfer 

functions, solutions are obtained with equation solve commands in the MATLAB 

program. Thus, below, the values of the dominant parameters originally used and 

the values found as a result of the estimation process are given in Table 5.3. 
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Table 5.3 Estimated aerodynamic via RLSM 
 

Paramters Original Values Estimated via RLSM 

𝐶𝐿 0.0642 0.0644 

𝐶𝐷 0.0514 0.049 

𝐶𝑀𝛼
 -0.4 -0.4191 

𝐶𝑀𝛼̇
 -2 -2.01 

𝐶𝐿𝛼
 3 2.976 

𝐶𝑀𝛿𝑒
 -0.3 -0.319 

𝐶𝐿𝛿𝑒
 0.2 0.2006 

 

Thus, the dominant parameters obtained have been found. Now the error table 

has been extracted to see to what extent the parameters approached the original 

values. this table is given in Table 5.4. 

 

Table 5.4 Error table for parameters via RLSM 
 

Paramters Error Rates 

𝐶𝐿 0.00311 

𝐶𝐷 0.0466 

𝐶𝑀𝛼
 0.04775 

𝐶𝑀𝛼̇
 0.05 

𝐶𝐿𝛼
 0.008 

𝐶𝑀𝛿𝑒
 0.0633 

𝐶𝐿𝛿𝑒
 0.003 

 

 

 

 

 

 

 

 

 



91 

6. CONCLUSION AND RECOMMENDATIONS 

 

In this study, how to use system identification and system identification 

techniques in the aviation field, examining and analyzing the accuracy of the 

results. In this context, primarily the parameter estimation method of the 

MATLAB program, various parameter estimation methods are explained. Some 

of these are explained in detail and shown with applications in the aviation field. 

In order to examine and see the system definition, firstly, the system idetification 

tool of the MATLAB program was examined. In this context, the idetification of 

the pitch transfer function obtained as a result of extracting the dynamic aircraft 

model of an aircraft was performed using this tool. Then, RLS and LS meodes, 

which are examples of online and offline parameter estimation methods, are 

discussed. By using these methods, the transfer functions resulting from the 

dynamic aircraft model of an aircraft have been estimated. These defined transfer 

functions are the transfer functions resulting from the behavior of the aircraft 

control surfaces as a result of the longitudinal and lateral motion of the aircraft. 

As a result of these analyzes, estimated transfer functions using both RLS and LS 

methods are compared and the results are shown. Therefore, as the main purpose 

of this study, it has been tried to show that the real time parameter estimation 

method, RLS method, gives better results. In this context, LS method, another 

parameter estimation method described for comparison, and transfer functions 

and graphs are compared for both methods. In order to see the comparisons 

mathematically, the ISE table was created. By looking at this table, it can be seen 

how close to the original forms of the transfer functions obtained by estimating 

them. While creating this table, it was created for both methods and the approach 

was seen in both methods. Thus, when looking at the results, although the RLS 

method made a certain successful estimation in the LS method, the estimation 

error rate of the RLS method was found to be less than the LS method. 

 

In general, the obtained transfer functions, graphs, error tables of the methods 

and the result put forward are explained. The graphics shown and obtained here 

were created by defining doublet input as input to the model created in 

MATLAB/Simulink, as outlined above. Thus, as can be seen in the graphs, better 
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results were obtained with both methods in terms of proximity to the original 

data. Until this stage, the graphics that came out by using more than one method 

were interpreted. Before using doublet input, more than one input value has been 

added to the model. In the first step, single sine value is used. Thus, the estimate 

values and graphics obtained were found to be very close to each other. Then, the 

sum of five sinusoidal values of different frequency and amplitude is defined to 

the model as the input value. With this result, the rate of proximity was higher. 

Thus, the results have been observed with the change of input values.  

 

After the analysis comments with different input values, the analyzes made with 

different data numbers are expressed. In the study, appropriate data numbers 

were used to reach the closest estimate of the results obtained above. However, 

some analyzes and determinations were made in order to see the effect of the 

changes in the data numbers. In this context, various changes were made in the 

number of data in the algorithms applied in the MATLAB program and the results 

were observed. The evaluation made according to this number of data was also 

carried out for the LS and RLS methods. Considering that the results obtained 

above are ideal results, when analyzes were performed with a smaller amount of 

data than the number of data used in obtaining those results, there was no change 

in the estimation process performed by the RLS method, while partial 

divergences occurred in the LS method. These results are given in Figure 6.1, 

Figure 6.2 and Figure 6.3 below. While performing these results, the same 

simulation time was applied as above.  



93 

 
 

Figure 6.1. Estimated via LSM for decreasing number of data (𝜃/𝛿𝑒) 
 

 

 
 

Figure 6.2. Estimated via LSM for decreasing number of data (𝜙/𝛿𝑎) 
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Figure 6.3. Estimated via LSM for decreasing number of data (𝜙/𝛿𝑟) 
 

Also, in addition to the results analysis, the results of the analysis for both 

methods, this time towards increasing the number of data, were shared. Here 

again, the RLS method performed a successful estimation process. With the 

increase in the number of data in the LS method, more successful results were 

acquired in the estimation results obtained. Thus, the behavior of the LS method 

to increase the number of data is shown in Figure 6.4, Figure 6.5 and Figure 6.6. 
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Figure 6.4. Estimated via LSM for increasing number of data (𝜃/𝛿𝑒) 
 

 
 

Figure 6.5. Estimated via LSM for increasing number of data (𝜙/𝛿𝑎) 
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Figure 6.6. Estimated via LSM for increasing number of data (𝜙/𝛿𝑟) 
 

Apart from the analysis according to the change in the number of data, a certain 

amount of error has been applied in order to see the changes in the result of the 

estimation process in case of breaking the system. In the systems used and 

examined, the originally used parameters were changed by increasing them 

starting from 10 percent before starting the estimation process. As the 

percentage rate increased, the error rate in the estimation result increased as a 

percentage.  

 

In addition, some step-response properties are also examined in order to see the 

time responses of these transfer functions. Thus, the system step-response 

characteristic between the original forms of the transfer functions and the forms 

estimated by the RLS and LS methods were investigated. In this context, as the 

step-response characteristics, rise time, settling time overshoot, damping ratio 

and natural frequency values were examined.  The time responses of the systems 

obtained in all three forms are given in Table 6.1 below. As a result, the time 

responses of the examined systems, namely the step-response characteristics, 
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were interpreted by looking at this table, and it was understood that the system 

responses of the transfer function obtained with RLS were closer to the responses 

of the original transfer function. Here, among the transfer functions analyzed 

above, only the time responses of the pitch transfer function are examined. In 

other words, the properties given in Table 6.1 are the pitch transfer function. 

Step-response characteristics information could not be obtained because other 

examined transfer functions displayed unstable behavior starting from their 

original forms. This situation can be understood by examining the pole-zero maps 

created in chapter 4 above. Note that the damping ratio and the natral 

frequenices are depicted for dominant poles of the system given in Equation 

(4.23) or (4.43), (4.24) and (4.44). 

 

Table 6.1 Step-response characteristic values 
 

Step-Response 
Characteristic 

Original Form 
Estimated 

Form via RLSM 
Estimated 

Form via LSM 
Rise Time 47.4256 45.7771 43.7028 

Settling Time 297.9623 299.7469 299.8347 

Overshoot 19.9879 20.9202 22.3634 

Damping Ratio 0.5650 0.5670 0.5560 

Natural Frequency 0.0235 0.0234 0.0239 

 

After estimating transfer functions, estimation of some dominant parameters 

used in the formation process of these transfer functions is explained. the process 

of finding dominant parameters and the paths followed are expressed in chapter 

5. As explained there, the equation number is obtained by using more than one 

transfer function obtained as a result of the motion equations resulting from the 

longitudinal motion of an aircraft. Because the number of equations obtained 

with the pitch transfer function we have in the first place was less than the 

number of unknowns. Then, the ratio of angle of attack to elevator displacement, 

another transfer function resulting from longitudinal motion, was deducted. This 

transfer function has also been estimated by both methods as previously applied 

to the pitch transfer function. Thus, as the last case, some dominant parameters 

were found mathematically using the equation solving process in the MATLAB 

program with these transfer functions obtained from both methods. The 
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formation of these transfer functions and their connection with the dominant 

parameters are expressed in the chapter of mathematical modeling. Some 

dominant parameters were obtained using RLS and LS methods. Separate 

parameter table has been created with both methods. When looking at these 

tables, it can be observed that each parameter is close to its original values. Again, 

during the estimation process of the parameters, the RLS method predicted 

better than the LS method in terms of proximity to the original values. Separate 

error tables were prepared to see the estimation closeness of both methods. Here, 

too, the proximity of the methods to the real data for each parameter is observed. 

Among these predicted parameters, the 𝑪𝑴𝑸
 and 𝑪𝑫

𝑪𝑳𝟐
 parameters have been 

estimated far from their true values. With both methods, these two parameters 

have a higher error rate compared to other parameters. 

 

After these dominant parameters were found, some changes were made on some 

of them and they were observed. The purpose of this observation was to see the 

effect of the change of parameters on the general system. In this context, first of 

all, the original values of the 𝑪𝑴𝑸
 parameter and the values that we estimate gave 

different values to the system. Thus, it has been determined that the effect of the 

estimated transfer functions obtained initially in general is almost nonexistent. 

These operations were repeated with another parameter. this time, the effect of 

𝑪𝑴𝜶
 parameter was tried to be observed by giving different values from its 

original value. Thus, it has been observed that this parameter changes in the 

transfer functions estimated according to different values. It is for this reason that 

the 𝑪𝑴𝜶
 parameter has a significant effect on whether its value can be changed 

for the general system. 
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