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Navigation is also referred to as knowledge about how to get from one point to 
another on the ground, which most people have an idea about. For both civil and 
military aviation, navigation is a field of concern. Therefore, in order to track the 
aircraft path, we get support from different sensors. GPS is the most commonly 
used sensor among them. It is a sensor that, although it has high accuracy rates, 
may be out of service. This study focused on the avaliability of aircraft's 
navigation in conditions where GPS is not in operation. In terms of efficiency, 
two visual-inertial navigation systems, VINS-Mono and ORB-SLAM3, which are 
the most well-known algorithms in the literature, have been examined and 
compared. In various conditions, it was found that ORB-SLAM3 outperformed 
the VINS-Mono system almost twice. 
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HAVACILIK İÇİN VINS-MONO VE ORB-SLAM3 ALGORİTMALARININ 
KULLANILABİLİRLİĞİ ÜZERİNE ARAŞTIRMA 

 
Burak Kaan ÖZBEK 
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Fen Bilimleri Enstitüsü 
Bilgisayar Mühendisliği Anabilim Dalı 

 
Danışman: Dr. Öğr. Üyesi Metin TURAN 

2021, 57 sayfa 
 
 

Çoğu insanın hakkında fikir sahibi olduğu seyrüsefer, genellikle karada bir 
noktadan diğerine nasıl gideleceği hakkında bilgi olarak sahibi olmak olarak 
bilinir. Seyrüsefer hem sivil hem de askeri havacılığın ilgi alanıdır. GPS 
aralarında en yaygın olarak kullanılan sensördür. Yüksek doğruluk oranlarına 
sahip olmasına rağmen kullanım dışı kalabilen bir sensördür. Bu araştırma, 
GPS’in kullanım dışı kaldığı ortamlarda bir uçağın seyrüseferini sürdürebilmeye 
odaklanmıştır. Verimlilik açısından literatürde en çok bilinen algoritmalar olan 
iki görsel-ataletsel navigasyon sistemi, VINS-Mono ve ORB-SLAM3 sistemleri 
incelenmiş ve performans açısından karşılaştırılmıştır. ORB-SLAM3’ün çeşitli 
durumlarda VINS-Mono’ya kıyasla iki kat daha iyi performans gösterdiği 
görülmüştür.  
 
 
 
 
Anahtar Kelimeler: Eşzamanlı Konumlandırma ve Haritalama, Görsel-Ataletsel 

Seyrüsefer, Görsel Odometri, Seyrüsefer. 
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1. INTRODUCTION 

 

The word aviation is most widely used to refer to mechanical air transportation 

performed by aircraft. Aeroplanes and helicopters are the two most common 

types of aircraft, but most current research meanings of the term aviation 

includes the use of unmanned aircraft, such as drones. 

 

1.1. Aviation Overview 

 

There are two forms of flight in the aviation industry: civil and military. Civil 

aviation, to put it plainly, is all aviation that is not related to the military. This 

extends to all private and commercial aircraft, regardless of whether they 

transport passengers, cargo, or a mixture of the two. 

 

Military aviation, on the other hand, refers to the use of aircraft in military 

environments. This form of air transportation is usually used to support aerial 

combat or surveillance missions. The majority of military aviation is affiliated 

with air forces, but there are also terms such as army aviation, navy aviation, 

and coast guard aviation (Revfine, 2021). 

 

In recent years, we can say that unmanned aerial vehicles (UAV) have started to 

take an important place in military, civil aviation applications as well as 

aircrafts. Although we cannot reach the numerical data of recent years, we can 

clearly see the increase in many areas of unmanned aerial vehicle systems used 

in the 4-year period from 2004-2007 as shown in Table 1.1. 

 

Table 1.1. Numbers of UAV systems in years (Everaerts, 2008) 

 

 2004 2005 2006 2007 

Civil/Commercial 33 55 47 61 

Military 362 397 413 491 

Dual purpose 39 44 77 117 
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Research 43 35 31 46 

Developmental   217 269 

 

The other reason for so demand is that, delivery companies such as Amazon, 

Uber, Google realized that they could use UAVs as a delivery platform. 

Thereupon, research and development activities on unmanned aerial vehicles 

were increased. Also, demand is expected to accelerate in the coming years as 

more companies study how UAVs can make their job safer and more cost-

effective. The entire UAV market is expected to be worth $92 billion by 2030 

(Daly, 2021).  

 

In addition, there is an autopilot system that does not receive direct assistance 

from the pilot, usually in civil aircraft flying on a certain route. Autopilots used 

to be limited to maintaining a steady heading and speed, but today’s autopilots 

can monitor any aspect of flight envelope from takeoff to landing. Working with 

the autopilot software, the autopilot owes his ability to its integration with the 

navigation system (Skybraryaero, 2021). 

 

Considering all this, safety is a big concern in the aviation industry, and although 

the rate of incidents is lower than in other industries, the survival rate is also 

lower. Many aviation accidents are caused by human or pilot error, despite the 

advancement of autopilot and other technical systems and their improved 

reliability. Li, Baker, Grabowski, and Rebok (2001) also state that, 80% of 

aviation accidents are caused by pilot error (Akca, 2020). In order to cope with 

problems, the aviation industry must become more competitive.  

 

In aviation, a range of technologies are used to navigate an aircraft. Each of 

these systems serves a distinct function and has a distinct mode of operation. 

Navigation is an important feature of aviation that is affected by a number of 

factors. As a consequence, in an environment where UAVs begin to manifest 

themselves in every field, where human error is tried to be minimized, countries 

in military aviation are trying to neutralize enemy with electromagnetic waves, 

undoubtedly, unmanned or manned aircraft are open to attack and error, such 
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as GPS, in order to fullfill their duties completely in all conditions. It is of great 

importance having an advanced navigation system is crucial in terms of both 

safety and cost (Mishra, 2019) and develop a positioning and navigation system 

which is more robust in situations that mentioned above. 

 

1.2. Problem Statement 

 

The method of determining where a mobile robot is situated on its environment 

is robot localization. Localization is one of the most fundamental competencies 

that an autonomous robot requires because of understanding the robot's own 

location is a vital precursor to future action decision-making. An environment 

map is available in a typical robot location scenario and the robot is fitted with 

sensors that track the environment and control its own motion. 

 

Navigation is a method that finds a way from one position to another. In order 

to complete the mission, aircraft navigation is one of the most significant fields 

of application, whether military or civil. 

 

In aviation, there are different methods for navigation. Although the details are 

not the topic of this study, it would be helpful to clarify briefly why we want to 

do this research. 

 

Aviation navigation is primarily carried out using two techniques known as 

dead reckoning and pilotage (Figure 1.1). By reference to various visual 

landmarks such as rivers, towns, airports and buildings, we can describe 

pilotage as the process by which the pilot navigates. However, in conditions of 

low visibility or where the pilot is slightly off track, the reference points are 

often not easily identified (Houston, 2019). 
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Figure 1.1. Pilotage and dead reckoning (Marsh, 2016) 
 

The system used by the pilot while traveling overseas, woods or deserts 

requires more skill and experience than pilotage is dead reckoning. It is a 

method of navigation that relies on parameters such as time, airspeed, distance, 

and direction only. From one point to another, the pilot must know the distance. 

On the pre-flight plan diagram, the pilot will schedule his route in advance. 

While the pilot is flying at a constant speed, with the aid of the compass, pilot 

will measure how long to achieve pilot objective and will keep the plane in the 

right direction. However, dead reckoning is not always a reliable technique 

because of the shifting wind direction (Flight Literacy, 2020). 

 

The sensors that assist in the methods we mentioned above called navigation 

aids (NAVAIDS). The Global Positioning System (GPS) is the most relevant of 

these sensors (Figure 1.2). As the most commonly used navigation aid today, 

GPS has proved how effective and powerful it is. GPS can provide navigation 

services at any time in the world under any weather conditions, while 

enhancing flight stages from departure, route progress and navigation on the 

surface of the airport (GPS, 2006). 
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Figure 1.2. GPS unit (Aeronautics Guide, 2017) 
 

GPS is also prone to faulty performance, considering its accuracy and ease of 

use. It is unavoidable that businesses or governments would want to be more 

cautious against errors and assaults, considering the development of technology 

and significant investments in aviation. In cases where GPS is not working or 

producing incorrect results, there are many other navigation methods available 

as mentioned above. In this study, we asked the question of how to use passive 

sensors (cameras) to ensure navigation with high accuracy and protection from 

attacks. In response, we saw that we could benefit from the Simultaneous 

Localization and Mapping (SLAM) systems that we encounter in the field of 

robotics, and we tended research on this way. 

 

SLAM methods in the literature were studied in the first section of this thesis. In 

the second section, we will give an overview of aviation. The fusion of the 

camera and the Inertial Measurement Unit (IMU) was discussed in the third 

section. Finally, comparative experiments were carried out on the public data 

related to the two most effective SLAM frameworks in the literature, VINS-Mono 

and ORB-SLAM3, and the problems that may be encountered in aviation mission 

on aircrafts scenarios were discussed. 
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2.  LITERATURE REVIEW 

 

In both military aviation and civil aviation, aircraft navigation knowledge has an 

important role. It is likely that aircraft that receive assistance from different 

sensors, such as GPS, Radar and Lidar, will be open to errors and attacks when 

delivering this information to us. The purpose of this study is to take a closer 

look at the SLAM approach to the navigation problem in aircraft and to present 

a solution plan by comparing the most robust algorithms in the literature. 

 

While localization and mapping were first viewed as separate issues, it was 

agreed that they should later be concerned with together. Previous studies have 

been reviewed in-depth in the literature in order to support research on this 

topic. 

 

Probabilistic approaches had just started to join the area of robotics and 

artificial intelligence when IEEE's Robotics and Automation conference took 

place in 1986. Peter Cheeseman, Jim Crowley, and Hugh Durrant-Whyte were 

among the researchers looking at adapting estimation-theoretical techniques to 

mapping and localization problems. 

 

Experiments by Smith and Cheeseman (1986) have provided a basis for 

manipulating the associations between signs and geometrical ambiguity. An 

essential component of this framework was to show that there is a high degree 

of correlation between estimates of various landmark locations on a map and 

that these correlations can also increase with successive observations. 

 

SLAM is a method according to Bailey and Durrant-Whyte (2006) by which a 

mobile robot can use the map to create an environment map and determine its 

location as well. In SLAM (Figure 2.1), both the position of the vehicle and the 

location of all key points are predicted on-line without the need to know the 

location in advance. 
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Figure 2.1. SLAM architecture (Bailey and Durrant-Whyte, 2006) 

 
Mapping and localization were initially separately studied, and it was later 

realized that they relied on each other. This implies that a correct map is needed 

in order to be precisely located in the environment, but it is necessary to 

produce a good map. To be correctly positioned when the map is applied to the 

elements. It can be called vision-only SLAM or visual SLAM when vision is used 

as the only perception system (without the use of data obtained from robot 

odometry or inertial sensors) (Paz et al., 2016). 

 

Davison et al. (2003) proposed one of the innovative Visual SLAM solutions 

(Figure 2.2). They used a single monocular camera and created a map by 

extracting uncommon features of the region using Shi and Tomasi (Shi and 

Tomasi, 1994) and comparing new features to those already found using a 

standardized correlation of the sum-of-squared difference. 
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Figure 2.2. Visual SLAM representation (Yu and Shengyong, 2018) 

 

In addition, only a small number of features were extracted and monitored to 

manage the computational expense of the Extended Kalman Filter (EKF) 

because EKF was used for state estimation. A vision-based approach to the 

localization and mapping of mobile robots using Scale-Invariant Feature 

Transform (SIFT) was proposed by Lowe (2004) for the extraction of features. 

 

When operating under the following conditions, many Visual SLAM systems fail: 

in external environments, in dynamic environments, in environments with too 

many or too few salient features, in large-scale environments, during irregular 

movements of the camera, etc. The key to a good visual SLAM system is the 

ability to function correctly in spite of these difficulties. 

 

With the objective of increasing accuracy and robustness, visual SLAM systems 

can be complemented by proprioceptive sensor information. This is referred to 

as Visual-Inertial SLAM by Jones and Soatto (2011). 

 

For a variety of reasons, Visual-Inertial Simultaneous Localization and Mapping 

(VI-SLAM), which combines camera and IMU data for localization and 

environmental perception, has become increasingly popular. The technology is 

used in robotics, in particular in extensive studies and applications involving 
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autonomous micro-aerial vehicle (MAV), augmented reality (AR) and virtual 

reality (VR) navigation (VR). 

 

One of the two concerns that SLAM is seeking to address is localization. One of 

the SLAM subtitles based on solving this issue is Visual Odometry (VO) (Figure 

2.3). 

 

The term VO was introduced in his landmark paper by (Nister, 2004). This term 

was used because of its similarity to the odometry of the wheel, which 

increasingly predicts the component's motion. 

 

 

 

Figure 2.3. General visual odometry pipeline (Ivan and Sinisa, 2015) 

 

According to Webster et al. (2016), visual odometry, by analyzing sequential 

camera images, measures the relative motion of the camera. The errors 

associated with the estimations obtained in visual odometry accumulate over 

time, similar to wheel odometry. 

 

Maps of the environment in which a mobile robot is required to locate and 

navigate are not accessible in most real-world robotics applications. Therefore, 

in order to achieve true autonomy, one of the key competencies of autonomous 

vehicles is the creation of a world map. 
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SLAM, on the other hand, by using the following filtering approaches such as 

EKF-SLAM (Thrun, 2002) and particle filter-based SLAM (Lu and Milios, 1997), 

and smoothing approaches such as Graph-SLAM (Thrun and Montemerlo, 2006) 

and RGB-D SLAM (Henry, 2012), goals to solve these two problems (localization 

and mapping) simultaneously. 

 

The map, modeled using Gaussian variables, is a large stacking sensor vector 

and a landmark state in EKF-SLAM. The EKF preserves this map, commonly 

referred to as the stochastic map, via the process of prediction (sensor 

movement) and correction (sensors observe previously mapped landmarks in 

the environment). Through nonlinear sparse optimization, Graph-SLAM solves 

the SLAM problem. They transform their intuition into a graphical 

representation of the problem of SLAM. 

 

The strength of the techniques of the graphical SLAM is that they scale to many 

higher-dimensional maps than the EKF-SLAM. The covariance matrix, which 

requires quadratic space in the map size, is the primary limiting factor in the 

EKF-SLAM. Graphical approaches do not have those disadvantages. 

 

Particle filters are the other main paradigm for SLAM. As a concrete guess as to 

what the true value of the state might be, each particle is best thought of. By 

collecting a number of such conjectures, particle filters catch a representative 

sample from the posterior distribution to obtain a collection of conjectures or a 

set of particles (Montemerlo et al., 2002). 

 

Using a filter-based or optimization-based approach to fuse visual and IMU 

measurements is a general and effective solution to navigation errors caused by 

the IMU's low-frequency noise. During the fusion process, IMU and Camera are 

combined to create a Visual-Inertial Odometry that not only takes advantage of 

the versatility of the visual system and is adaptable to a wide range of scenes 

but also utilizes the high-precision features of the IMU in the short term. Visual 

and inertial sensor-based research on SLAM algorithms is therefore of great 
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importance and application importance, allowing vehicles to view the ambient 

environment in order to gain localization knowledge (Sun et al., 2018). 
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3. SIMULTANEOUS LOCALIZATION AND MAPPING 

 

The problem of simultaneous localization and map building asks whether it is 

possible for an autonomous vehicle to start in an unknown location in an 

unknown environment and then gradually create a map of this environment 

while simultaneously using this map to measure the absolute location of the 

vehicle (Dissanayake et al., 2001). 

 

A very active research topic is the use of the camera as the key source of 

information for environmental sensing, as the camera is lightweight, consumes 

less power and offers a wealth of information as well. Nowadays, digital 

cameras with low power consumption are inexpensive and have a lightweight 

form factor. Under severe conditions, they can also operate safely, since there 

are no moving mechanical parts. However, the job races by time in order to 

process a large amount of real-time information in order to create both the 

environmental model and the camera location in each case. 

 

3.1. Localization 

 

The method of determining where a mobile robot is situated on its environment 

is robot localization. Localization is one of the most fundamental competencies 

that an autonomous robot requires because of understanding the robot's own 

location is a vital precursor to future action decision-making. An environment 

map is available in a typical robot location scenario and the robot is fitted with 

sensors that track the environment and control its own motion. 

 

The problem of localization then becomes estimation of the robot's position and 

orientation within the map using the data obtained from these sensors. Robot 

localization techniques need to be able to manage noisy observations and not 

only estimate the robot's position, but also measure the uncertainty of the 

estimate for the location (Webster et al., 2016). 
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Simple trigonometric computation is required on the robot's absolute location 

until a correspondence is established between the perceived features in their 

local frame or reference and the mapping features in the absolute frame or 

reference. The perceptual characteristics of the robot are the basic criterion for 

the applicability of specific methods. The capacity to uniquely identify 

landmarks, for instance, would render the issue of correspondence tirivial. In 

order to facilitate the recognition of a robot in the working world, industrial 

applications also use special artificial tags (Hahnel et al., 2004). 

 

3.2. Mapping 

 

There are two main types of maps used for visual localization; metric maps and 

topological maps.  

 

By gathering sequences of locations, topological maps represent the world in a 

relative way. The locations themselves are only represented in a very rough 

way. Typically, topological maps are represented using graph-based structures 

where nodes correspond to locations and edges reflect approximate 

transformations between places. 

 

A topological map consisting of visual pathways (Figure 3.1) to connect 

locations captured for indoor navigation purposes by wearable cameras is 

defined by Rivera-Rubio et al. (2014). They also illustrate that considering 

multiple frames (as opposed to single frames in isolation) increases the 

efficiency of localization across visual paths. 

 

In guiding robots where it is difficult to obtain globally accurate metric maps, 

such as in mines and indoors, topological maps, often used in teaching-and-

repeating navigation methods, were helpful. These methods of visual navigation 

have the benefit of a minimum setup time. The mapper records the visual 

information it observes along the road in the first traversal of the environment. 

The follower will be able to locate itself along the mapper's trajectory in the 

navigation phase and follow the path to the desired location. The system 
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produces a relative map of stereo images (Furgale and Barfoot, 2010) that 

allows the follower to locate any location along the map and navigate to any 

destination. 

 

 

 

Figure 3.1. Topological graph (Blöchliger et al., 2018) 

 

In order to enable precise location and route planning, metric maps are 

designed to provide precise communication between the environment and its 

representation. Examples of metric maps are maps in the form of 3D models or 

3D point clouds. It is possible to obtain such point-cloud maps from an 

unordered image set using a structure from motion algorithm. The structure 

from motion is defined by the offline reconstruction of 3D maps from an 

unordered image set. Structure From Motions (SFM) algorithm operates in a 

greedy way on image pairs, building up a consistent 3D scene model gradually. 

The SFM algorithm achieves the highest possible accuracy of the model output 

thanks to bundle modification (i.e. non-linear optimization of the re-projection 

errors of the recovered dots). The intrinsic parameters of the camera do not 

need to be specified from the user's point of view before the reconstruction is 

carried out, as these parameters can be used in the optimization process. SFM 

algorithm has been popular indoor localization literature for this purpose as 

technique for building 3D models that can be used to locate mobile devices 

(Clark, 2017). 
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3.3. Visual SLAM and Visual Odometry 

 

Visual SLAM (V-SLAM) refers to the method of determining the sensor's 

position and orientation in relation to its environment, while mapping the 

sensor's surroundings at the same time. 

 

V-SLAM is a particular type of SLAM system that leverages 3D vision when 

neither the environment nor the location of the sensor is known to perform 

position and mapping functions. Visual SLAM technology is available in different 

ways, but in all visual SLAM systems, the overall architecture functions in the 

same way (Vision Online, 2018). 

 

In the computer vision community, the issue of obtaining relative camera poses 

and three-dimensional (3D) structure from a set of camera images (calibrated 

or non-calibrated) is known as SFM as defined above (Figure 3.2). 

 

A particular case of SFM is Visual Odometry (VO). SFM is more general 

technique and tackles with the problem of reconstruction of 3D from 

sequentially ordered or unordered image sets using both the structure and the 

camera. With offline optimization (i.e. package adjustment), the final structure 

and camera poses are typically refined, the measurement time of which 

increases with the number of images (Bailey and Durrant-Whyte, 2006). VO, on 

the other hand, focuses on estimating the camera's 3D motion sequentially 

when a new frame arrives and process it in real time. To refine the local 

trajectory estimation, package adjustment can be used. 

 



  

16 
 

 

 

Figure 3.2. Structure from motion process (Yilmaz and Karakus, 2013) 

 

VO aims to gradually recover the route, pose after posing, and theoretically 

optimize just above the last n path poses (this is also called windowed bundle 

adjustment). It is possible to consider this sliding window optimization to be 

analogous to constructing a local SLAM map. In VO, however, we are only 

concerned with the trajectory's local consistency, and the local map is used to 

obtain a more reliable local trajectory approximation (for example, in the 

bundle adjustment), while SLAM is concerned with the consistency of the global 

map (Scaramuzza and Fraundorfer, 2011). 

 

3.3.1. Camera modelling and calibration 

 

The mathematical model of the camera consists of conversion algorithms 

between the position of the points in the world of the 3D object and their 

existence as points on the plane of the 2D image. If the camera's intrinsic and 

extrinsic parameters and the observed position of the 3D object points are 

known, the camera model can be used to decide at which point the object ends 
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on the image. It can also be used in the other way around; if an image point and 

camera parameters are known, all possible object points from which the cloud 

image point originates can be measured by the camera model. 

 

The aim of the calibration is to measure the camera device's internal and 

external parameters precisely. Planar checkerboard-like (Figure 3.3) patterns 

are the most common type. It describes how the squares on the board are 

placed. The consumer must take a number of pictures of the board shown in 

different locations and directions in order to accurately calculate the calibration 

parameters by making sure that the camera's field of view is as wide as possible. 

Using the least-square minimization procedure, intrinsic and extrinsic 

parameters can then be measured. The input data is 2D position of each image 

on the board squares' corners and their corresponding pixel coordinates. 

 

 

 

Figure 3.3. Checkerboard (8x5) (Jones, 2019) 
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3.3.2. Feature detection 

 

A local feature is an image pattern that varies in terms of intensity, color and 

texture from its immediate surroundings. Point detectors, such as corners, are 

important for VO, their position in the picture must be precisely determined. 

Some of the state-of-the-art algorithms for the detection of features are briefly 

explained below. 

 

3.3.2.1. Harris corner detector 

 

Instead of using moving patches for every 45-degree angle, Harris corner 

detector (Harris and Stephens, 1988) takes the difference in angle score directly 

into account in relation to position and has been shown to be more effective in 

the distinction between edges and corners. Since then, in many algorithms, the 

pre-processing of images for subsequent applications has been improved and 

introduced. 

 

3.3.2.2. Scale invariant feature transform 

 

Scale Invariant Feature Transform (SIFT) has the scale invariance property, 

which makes it better than Harris. Harris is not scale-invariant; if the scale 

changes, a corner can become an edge. 

 

The SIFT algorithm consists mainly of 4 steps. The first is the calculation of 

extreme scale space using the Difference of Gaussian (DoG). Second, a key point 

location in which the key point candidates are localized and optimized by 

removing the low contrast points. Third, a key point orientation assignment 

based on the local image gradient and, lastly, a descriptor generator to calculate 

the local image descriptor based on the image gradient magnitude and 

orientation for each key point gradient (Lowe, 2004). 

 

 

 



  

19 
 

3.3.2.3. Speeded-up robust features 

 

A fast and robust algorithm for local, connected invariant representation and 

image comparison is the Speeded-Up Robust Feature (SURF) method (Bay et al., 

2006). The main aim of the SURF method is to quickly compute operators using 

box filters, allowing real-time applications such as tracking and object 

recognition to be used. 

 

3.3.2.4. Features from accelerated segment test 

 

Features from Accelerated Segment Test (FAST) is a method of corner detection 

that could be used in a number of computer vision tasks to extract feature 

points and later to track and map objects (Viswanathan, 2011). FAST compare 

pixels only on a fixed radius circle around the point. 

 

3.3.2.5. Shi-tomasi 

 

The basic understanding here is that corners can be identified in all directions 

by looking for visible changes. We consider a small image window in this 

process that scans the whole image, looking for corners. If that specific window 

happens to be situated in the corner, moving this small window in any direction 

can result in a noticeable change in appearance. In either direction, there will be 

no change in the flat area. 

 

This algorithm is based on a model of refined image changes and a technique for 

monitoring features during tracking (Shi and Tomasi, 1994). In particular, the 

selection maximizes the tracking quality and is therefore suitable for building, 

as opposed to more ad-hoc texture redness steps. Based on a measure of 

dissimilarity that uses affine motion as the underlying model of image change, 

monitoring is computationally inexpensive and helps to differentiate between 

good and bad characteristics. 
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3.3.2.6. Oriented FAST and rotated BRIEF  

 

A fast, robust local feature detector, first proposed by Ethan Rublee et al. 

(2011), is an Oriented FAST and Rotated BRIEF (ORB) that can be used for 

computer vision tasks such as object recognition or 3D reconstruction. It is 

based on the FAST keypoint detector and the visual descriptor Binary Robust 

Independent Elementary Features (BRIEF) edited edition. Itis an alternative to 

the SIFT with a fast and effective way. 

 

3.3.3. Feature tracking 

 

To discover the features and their correspondence, there are two main 

approaches. The first is to recognize features in one image and, using local 

search techniques, such as correlation, track them in the next images. In all 

images, the second is to independently detect features and align them based on 

some metric similarity between their descriptors. When the pictures are taken 

from nearby points of view, the former approach is more suitable, while the 

latter is more suitable when a large motion or point of view is needed to move. 

 

Their appearance may undergo major changes in the case of features that are 

tracked over long sequences of images, in which case the solution is to apply an 

affine-distortion model to each feature. The resulting tracker is also referred to 

as the Kanade Lucas Tomasi (KLT) tracker (Bruce and Kanade, 1981). 

 

3.3.3.1. Kanade lucas tomasi tracker 

 

Kanade Lucas Tomasi Tracker (KLT) is an algorithm for tracking changes. It is 

seeking, in its basic form, to find a change that might have taken a point of 

interest. The method is based on local optimization: a criterion of squared 

distance over a local area generally. You approximate a linear term 

displacement function using the Taylor series to solve this problem. This 

technique can also be used to address more practical changes (Scaramuzza and 

Fraundorfer, 2012). 
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3.3.4. Data association 

 

Data association in SLAM can simply be interpreted as a problem of feature 

correspondence, which recognizes two features observed as being from the 

same physical object in the world at different locations and time points. When a 

robot returns to the trajectory's starting point, two common implementations of 

this data association are to suit two successive scenes and close a loop of a long 

trajectory. 

 

Therefore, it is important to have very robust features, even under poor lighting 

conditions or from different points of view, in order to succeed in solving the 

correspondence problem. The use of vision sensors provides the opportunity to 

extract landmarks when considering 2D and 3D data, makes it possible to 

choose more robust features (Saez et al., 2006). 

 

3.3.5. Random sample consensus 

 

Random sample consensus (RANSAC) is an iterative method to estimate the 

parameters of a mathematical model from a set of outliers containing observed 

data (Figure 3.4) where the purpose is to prevent outliers influence the 

estimated values. Therefore, it can also be viewed as a method of outlier 

detection. It produces a logical result only with a certain probability. On the 

other hand, in order to obtain a higher probability more iterations are required, 

because of it is a non-deterministic algorithm. The algorithm was first published 

by Fischler and Bolles (1981). To solve the problem of position determination, 

they used RANSAC, where the objective is to decide the points in the space that 

project onto an image using a set of landmarks with known places. 

 

The basic assumption is that the data consists of "inliers," i.e. data whose 

distribution can be represented by a set of parameters of the model, even 

though they may be subject to noise, and "outliers" that do not fit the model 

with the data. Outliers can occur, for example, from extreme noise values, or 

from incorrect measurements, or from incorrect data interpretation 
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assumptions. RANSAC also assumes that there is a procedure that can 

approximate the parameters of a model that represents or matches these results 

optimally, in the sense of a set of inliers. 

 

Algorithm of RANSAC (Derpanis, 2005): 

 

1. Select at random the minimum number of points needed for the model 

parameters to be calculated. 

2. Resolve the model parameters. 

3. Then all other data is checked against the fitted model. Those points that 

suit well with the approximate model are considered as part of the 

consensus set according to some model-specific loss function. 

4. If too many points have been categorized as part of the consensus 

collection, the estimated model is relatively strong. 

5. Afterwards, repeat steps 1-4 maximum of N times (all members of the 

consensus set). 

 

 

 

Figure 3.4. Random sample consensus (Wikipedia, 2020) 
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3.3.6. Loop closure 
 

Loop Closure Detection (LCD) is a key component of SLAMs that can be 

described as a method that tries to find a match between the current 

observation and the previously visited location. The robust LCD would greatly 

reduce the calculated trajectory and plot's drift error. The efficiency of the LCD 

becomes more and more important as the size of the map increases, but the 

time taken to find the correct loop closure candidates will become more 

complicated and more computational. The LCD has gained significant attention 

in recent years as an integral part of the SLAM issue (Wang et al., 2019). 

 

In general loop-closure detection algorithms can be classified into three groups: 

map-to-map, image-to-map, and image-to-image (Andrey and Yakovlev, 2017). 

 

The map-to-map approach is very intense in terms of results, as it deals with 

large amounts of each iteration when comparing sub-maps. As a consequence, it 

scales poorly in large environments. 

 

The approach to image-to-map is fast and precise, but in practice it is very 

memory intensive since both the point-cloud map and all the image features 

need to be processed. 

 

The image-to-image loop-closure scales well to large environments and, with 

feature-based methods, can be computed easily, but relies heavily on a 

vocabulary. Thus, it can be concluded that a combination of different methods is 

more optimum to achieve higher performance while high degree of accuracy 

and robustness. 
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4. VISUAL-INERTIAL SLAM 

 

Due to extraneous factors such as motion blur, lack of or too much sunlight, and 

blocked cameras, visual measurements may be blurred or unavailable. The 

measurements taken from a wide variety of sensors, such as sonar, radar, lidar, 

encoders and touch switches, can support information used to solve the visual 

SLAM problem. Body acceleration and rotation speeds are such sensing 

modalities that is of great interest to visual SLAM. Typically, gyroscopes and 

accelerometers in an IMU evaluate these quantities. IMU measurements are 

carried out at discrete points in time, similar to visual measurements of 

landmark forecasts, but are measurements of continuous variables. In general, 

IMU measurements are taken at higher frequencies (100-1000Hz) than visual 

measurements (30-60Hz). 

 

The graphical model for illustrating the visual-inertial batch problem of the 

SLAM is shown in figure 4.1. In the model, a new kind of constraint can be seen, 

linking poses directly together by integrating inertial measurements. In its 

tightly coupled form, this graph shows the visual-inertial SLAM problem, where 

visual and inertial measurements are considered at the same time and all sensor 

states are optimized. This is due primarily to the existence of new sensor states 

when inertial measurements are considered. 

 

The second derivative of the amount of interest for optimization is determined 

by accelerometers: the camera's path. In order to use inertial measurements, 

speeds must be calculated for this purpose. Similarly, sensor biases are 

influenced by IMU measurements that have to be constantly estimated as they 

shift depending on extraneous variables such as temperature. If these 

parameters are not estimated, IMU measurements are restricted to their use in 

loosely coupled formulations, where they are used as inclination or rotation 

signs, but not fully incorporated with visual measurements. 
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Figure 4.1. Graphical model of visual-inertial SLAM (Keivan, 2009) 

 

4.1. Sensor Fusion 

 

In order to provide a comprehensive and complete picture of the environment 

or process of interest, sensor fusion is the process of combining information 

from a number of different sources/sensors. In such a way the resulting 

information is less vague than would have been possible if these sources were 

used individually. In autonomous systems and mobile robotics, sensor fusion 

methods have a very important role. Theoretically, data fusion systems allow 

information to be combined in order to provide sufficient knowledge for the 

complexities and integrity of decision-making and autonomous execution 

(Khalid et al., 2015). 

 

4.1.1. Sensor types 

 

First of all, there are many ways for obtaining environmental measurements in 

SLAM applications. For this reason, lidars and cameras are most widely used 

sensors. The most popular cameras used for SLAM systems are monocular and 

stereo cameras (Figure 4.2).  

 

In terms of the measurement properties for various use cases, there are pros 

and cons of each sensor type. The benefit of collecting scale data is that Lidar's 

and the stereo cameras assess depth in the area. In the data association 

procedure of any SLAM scheme, this property will be very useful. But on the 
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other hand, due to the type of active sensor and transmitting rays to the 

atmosphere in the measurement process, for example Lidar's has the downside 

of stopping the aircraft from being stealthy.  

 

 

 

Figure 4.2. Monocular camera (left) and stereo cameras (right) (Jung et al., 

2005) 

 

Stereo and monocular cameras are other options for camera usage. Stereo 

cameras are useful and versatile for small-scale applications, mainly for indoor 

SLAM applications. They are not usable in large distance settings, since the 

baseline camera and the distance to the landmark ratio should not be too small 

to obtain accurate depth information in stereo cameras. 

 

On the other hand, in calculating motion, the monocular camera eliminates the 

effect of calibration errors. One of the main benefits of using monocular cameras 

is that they are cheaper and simpler to deploy than stereo cameras. Although 

monocular cameras suffer from scale uncertainty, IMU in visual-inertial 

navigation helps to solve this problem. 
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4.1.2. Fusion methods: tightly coupled – loosely coupled 

 

In Visual-Inertial algorithms, the design of a structure depending on whether 

the fashion is tightly or loosely coupled is another aspect to be calculated. 

 

Both camera and IMU measurements are determined separately in the case of 

loosely coupled fusion and, in the end, fusion is applied to their calculation. As 

the integration of visual and inertial information is not considered at the raw 

data stage in a loosely coupled process, this makes the system incapable of 

correcting vision drifts merely by approximation. 

 

On the other hand, to estimate the position of the platform, raw measurements 

of the camera and the IMU were used together in a tightly coupled process. A 

tightly linked approach takes more energy for computation, but it is more 

efficient than a loosely linked approach. 

 

4.2. VINS-Mono 

 

VINS-Mono is a monocular real time visual-inertial SLAM platform proposed by 

Aerial Robotics Group of HKUST in 2017. To provide an extremely accurate 

visual inertial odometer, it uses an optimized sliding window. 

 

The VINS-Mono algorithm is briefly explained in this section. The non-linear 

optimization-based approach is applied to obtain visual-inertial odometry by 

fusing the IMU measurements and the visual camera measurements in the VINS-

Mono algorithm, tightly coupled. It is time now to clarify some general concepts 

and concepts related specifically to VINS-Mono. 

 

Figure 4.3 is the general structure for the visual-inertial pose estimation. Most 

Visual-Inertial Odometry (VIO) applications use a visual data camera and an 

IMU sensor. The inputs are the camera image and the IMU data containing 

acceleration and angular velocity measurements, in the context provided in 

Figure 4.3. Outputs are calculated by the 6-Degrees-of-Freedom (DoF) platform 
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based on these inputs. As soon as the extraction of the features and pre-

integration of IMU is completed, the system starts. Inertial and visual poses for 

the initial estimation of the platform are combined with their pose, velocity, 

gyroscope bias and gravity vector. By the visual-inertial odometry algorithm, 

these values are modified iteratively. Finally, the 6-DoF pose of the platform can 

be obtained. 

 

 

 

Figure 4.3. General structure of visual-inertial pose estimation (Qin et al., 2018) 

 

For camera systems, two techniques are applied. The first uses a stereo camera 

to construct a system, and the other uses a monocular camera. The stereo 

camera approach requires a long duration for reliable results. The baseline is 

the difference between the stereo camera's two lenses and the depth range that 

can be observed and the resolution of the depth. For that purpose, for airborne 

applications, it requires a broad baseline that is simply not practical. The precise 

structure of the VINS-Mono algorithm is shown in Figure 4.4. It starts with the 

preprocessing stage of measurement in the VINS-Mono algorithm structure. For 

the popular VIO and Visual SLAM algorithms as mentioned, this section is 

common. A feature that extracts camera data and IMU measurements between 

two consecutive camera frames is included in the preprocessing measurement 

section. At initialization, the position values, velocity, vector, gravity, gyroscope 

bias and 3D position of the environmental characteristics are obtained. At a 

further point, pre-integrated IMU measurements and feature observations are 

merged into the VIO module to re-locate the system. 
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Figure 4.4. Detailed structure of the VINS-Mono (Qin et al., 2018) 

 

Finally, to remove the drift, the pose graph optimization module is used. In the 

suggested framework, re-localization and graph optimization operate 

concurrently. Loop closures that classify the places already visited are identified 

in the re-location process. The entire pose graph is modified according to the 

correspondence between the loop closure frame and the current frame, based 

on the loop closures observed. On the other hand, in the graph optimization 

section, the residual errors of the edges between frames are minimized. The 

relative transformation between two frames is finally edges. The pose graph 

shifts and has become globally consistent as a result of this optimization. The 

pre-integration IMU and the IMU sample trajectory are shown in Figure 4.5. The 

camera is correlated with the characteristics seen in the field. Aligning the visual 

structure with the pre-integration of the IMU is the basic idea. 
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Figure 4.5. IMU pre-integration (Qin et al., 2018) 

 

After the initialization process, Figure 4.6 shows the flow. Centered on tightly 

coupled monocular VIO for state estimation, this approach is called "sliding 

window". The strategy for marginalization is defined in Figure 4.7. In this 

technique, the algorithm checks whether or not a mainframe is the second last 

frame, then it is the oldest frame and marginalized. 

 

 

 

Figure 4.6. Sliding window approach (Qin et al., 2018) 

 

As mentioned above, marginalized visual and inertial ratios are used. But if the 

last frame of the second is not a mainframe, the visual dimensions would be 

omitted. But at the IMU pre-integration stage for additional frames, inertial 

measurements are still retained. In the sliding window process, re-locating pose 

graph optimization and loop closure are shown in Figure 4.8. If the next 
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keyframe detects a loop, the keyframe is marginalized and re-located. All poses 

are optimised in another thread, according to the re-location. 

 

 

 

Figure 4.7. Marginalization step (Qin et al., 2018) 

 

 

 

Figure 4.8. Re-localization and graph optimization (Qin et al., 2018) 
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4.3. ORB-Slam3 

 

ORB-SLAM3 is a Visual-Inertial SLAM system (Campos et al., 2020) built on 

ORB-SLAM (Mur-Artal et al., 2015), ORB-SLAM2 (Mur-Artal and Tardos, 2017) 

and ORB-SLAM Visual Inertial by Mur-Artal and Tardos (2017). Figure 4.9 

shows the main parts of the ORB-SLAM3. ORB-SLAM3 claims to be the best 

visual-inertial system in the literature.  

 

 

 

Figure 4.9. Main components of ORB-SLAM3 (Campos et al., 2020) 

 

ORB (Rublee et al., 2011) was selected for feature extraction, as shown in Figure 

4.10. Although it is invariant to the point of view, ORB is extremely quicker to 

compute and match. This makes it possible to comply with wide baselines, 

enhancing the precision of the Bundle Adjustment (BA). 
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A multi-map representation consisting of a variety of disconnected maps is the 

Atlas. There is an active map where the tracking thread locates the incoming 

frames, and with new keyframes, the local mapping thread constantly optimizes 

and expands. 

 

The tracking thread processes the sensor information and calculates in real-

time the position of the current frame with respect to the active map, thus 

minimizing the reprojection error of the corresponding map characteristics. It 

also decides whether it will become a keyframe for the current frame. Body 

velocity and IMU bias are determined in visual-inertial mode by using inertial 

residuals in optimization. The tracking thread tries to move the current frame to 

all Atlas maps when tracking is lost. 

 

Using visual or visual-inertial bundle adjustments, the local mapping thread 

adds the keyframes and points to the active map, removes redundant ones, and 

refines the map, running in a local keyframe window near the current frame. 

For every new keyframe, Closing Loop searches for loops. If a loop is located, it 

measures a transformation of similarity that tells the cumulative drift in the 

loop. Both sides of the loop are centered at the end, and the duplicate points are 

joined together. 

 

 

 

Figure 4.10. Matcing result using ORB (Rublee et al., 2011) 
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5. MATERIAL AND METHOD 

 

VINS-Mono and ORB-SLAM3 were compared in terms of availability for aviation. 

We showed trajectories of VINS-Mono and ORB-SLAM3 initally. Eventually a 

numerical analysis conducted to demonstrate the accuracy of our systems by 

Root Mean Square Error (RMSE). 

 

5.1. Dataset 

 
VINS-Mono and ORB-SLAM3 were tested using a visual-inertial dataset of the 

EuRoc MAV (Burri et al., 2016). Two datasets were provided. The first dataset 

was recorded in a large machine hall and was intended to test visual-inertial 

motion estimation algorithms or SLAM frameworks. A 3D location was provided 

by a laser tracker for ground truth. On the other hand, the second dataset was 

recorded in the Vicon room fitted with a motion capture device with an 

approximate size of 8mx8.4mx4m. 

 

5.2. Evaluation 

 

The EuRoC MAV visual-inertial dataset provides 11 sequences. 8 of them were 

selected for commenting on specific conditions. Each sequence has different 

environment specifications as given in Table 5.1. Experiments were executed on 

an Intel Xeon (R) CPU E5-1620 v4, at 3.50 GHz with 32 GB memory.  

 

The trajectories of the sequence (MH_04_difficult) with their ground-truth are 

presented in the Figure 5.1 in order to show that how the trajectories were 

examined. Figure 5.1 shows the trajectory of selected sequences with VINS-

Mono (a) ORB-SLAM3 (b) and their ground truth alignments respectively (c) 

and (d). The Root Mean Square Errors (RMSE) of selected sequences in EuRoC 

datasets were evaluated by two error metrics, Absolute Pose Error (APE) (Table 

5.2) and Relative Pose Error (RPE) (Table 5.3) using evo-tool1. The APE is well-

suited to visual SLAM systems output measurements. The RPE on the other 

                                                 
1 github.com/MichaelGrupp/evo 
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hand, is well-suited to calculate the drift of a visual odometry system, such as 

drift per second. ORB-SLAM3 outperformed for all cases. 

 

APE compares the trajectory of a vehicle to the actual trajectory (ground truth), 

as reconstructed by an algorithm using real sensor data as its input. By 

comparing the absolute distance between the estimated trajectory and the 

ground truth, global consistency can be measured. 

 

By comparing the reconstructed relative transformations between nearby poses 

to the actual relative transformations (ground truth), RPE tests the accuracy of a 

SLAM outcome, as reconstructed by an algorithm using real sensor data as its 

input. 

 

Table 5.1. Environment specifications of selected datasets 

 

Name Distance/Duration Average 

Velocity/Angular 

Velocity 

Conditions 

MH_01_easy 80.6m 

182s 

0.44ms-1 

0.22rads-1 

Good texture, 

bright scene 

MH_02_easy 73.5m 

150s 

0.49ms-1 

0.21rads-1 

Good texture, 

bright scene 

MH_03_medium 130.9m 

132s 

0.99ms-1 

0.29rads-1 

Fast motion, 

bright scene 

MH_04_difficult 91.7m 

99s 

0.93ms-1 

0.24rads-1 

Fast motion, 

dark scene 

V1_01_easy 58.6m 

144s 

0.41ms-1 

0.28rads-1 

Slow motion, 

bright scene 

V1_02_medium 75.9m 

83.5s 

0.91ms-1 

0.56rads-1 

Fast motion, 

bright scene 

V2_01_easy 36.5m 

112s 

0.33ms-1 

0.28rads-1 

Slow motion, 

bright scene 
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V2_02_medium 83.2m 

115s 

0.72ms-1 

0.59rads-1 

Fast motion, 

bright scene 

 

When looking at RMSEs of APE, the first thing is that VINS-Mono gave the same 

error rate in the sequences of MH_01_easy and MH_02_easy under the same 

ambient conditions but with different flight durations. On the other hand, the 

accuracy rate of ORB-SLAM3 is slightly higher in the MH_01_easy series, where 

the flight takes longer. While this efficiency could be linked to better 

optimization of the pose on long-term flights, depending on the flight period, it 

will be difficult to vary accuracy rates. Testing the efficiency of ORB-SLAM3 in 

systems where flight missions such as airplanes and helicopters will change 

regularly and error rates are supposed to be close to zero will be costly for 

different topics, such as time and workload. When the ORB-SLAM3 or similar 

system is to be integrated into these aircraft, further developments and studies 

are needed in this respect. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5.1. Trajectories 
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How the dark environment affects the efficiency of the algorithms can not be 

applied to because of the change not only in the conditions but also in the 

distance between sequences for MH_03_medium and MH_04_difficult. The 

capabilities of these algorithms with the EuRoC MAV dataset in the dark 

environment can not be fully understood if the impact of the light level on the 

environment for performance is believed to be resolved at the hardware level 

(high sensitivity cameras). However, if different types of sensors are used in air 

vehicles, such as planes and helicopters, algorithms need to be compared not 

only routinely, but also according to hardware variations. 

 

Table 5.2. RMSE of APE (Meters) 

 

In the V2_01_easy and V2_02_medium sequences where flight times are similar 

to each other and only the speed of motion of the drone varies in the 

environment, we found that when VINS-Mono performed quick maneuvers, the 

error rate increased approximately 2 times. ORB-SLAM3, on the other hand, 

decreased the error rate even further. In the case of moving objects in the Vicon 

Room (V1_01_easy, V1_02_medium, V2_01_easy, V2_02_medium) sequences, it 

is shown that ORB-SLAM3 results in better matching and tracking features. 

 

 

 

 

 VINS-Mono ORB-SLAM3 

MH_01_easy 0.182 0.016 

MH_02_easy 0.182 0.065 

MH_03_medium 0.404 0.041 

MH_04_difficult 0.393 0.110 

V1_01_easy 0.144 0.050 

V1_02_medium 0.311 0.013 

V2_01_easy 0.121 0.041 

V2_02_medium 0.275 0.013 
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Table 5.3. RMSE of RPE (Meters)  

 

We can think of the pitch as the up and down motion of the aircraft. Pitch 

regulation is what most precisely distinguishes an aircraft's activity in the sky 

from any earth-linked vehicle. This includes the act of manoeuvring an aircraft 

on the runway. And, in simple terms, yaw is the perpendicular movement of the 

plane's nose to the wings (left or right). The roll is the movement of the aircraft 

that rocks back and forth. In a roll, the airplane's wings shift up and down. 

Although the left wing is tilted up, the right inevitably points down. 

 

When we examine the roll, pitch yaw angles given in Figure 5.2 with sequences 

of V2_01_medium and MH_03_medium. (a) and (b) represents VINS-Mono and 

ORB-SLAM3 in V2_01_medium and (c) and (d) shows the MH_03_medium in 

VINS-Mono and ORB-SLAM3 angles respectively. We can see that ORB-SLAM3 

highly overlaps with the actual angle (ground truth) values at pitch and yaw 

angles. Although the accuracy of the roll angles is not as high as the others, we 

observe another advantage of ORB-SLAM3 with respect to the VINS-Mono 

algorithm. 

 VINS-Mono ORB-SLAM3 

MH_01_easy 0.1885 0.0048 

MH_02_easy 0.1985 0.0054 

MH_03_medium 0.4130 0.0063 

MH_04_difficult 0.4020 0.0078 

V1_01_easy 0.1489 0.0038 

V1_02_medium 0.3042 0.0062 

V2_01_easy 0.1187 0.0044 

V2_02_medium 0.2376 0.0078 
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(a)  

 

(b) 

 

(c) 

 

(d) 

 

Figure 5.2. Roll, pitch, yaw angles with ground truth 

 

ORB-SLAM3 gives better performance in any experiment applied to. ORB-

SLAM3 provides much higher accuracy values in RPE error values than APE 

error values when the error metrics considered. While ORB-SLAM3 gives 

approximately 2 times more precision than VINS-Mono in terms of trajectory 

accuracy and this rate increases even more while considering it on the basis of 

RPE. In evaluating visual odometry efficiency, taken into consideration of RPE, 

ORB-SLAM3 also performed better at localization.  
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6. CONCLUSION AND DISCUSSION 

 

Perhaps it is aviation that has the least feature tolerance of any system in the 

world. Navigation is one of the most important subsystems when we consider 

many parameters such as taking off, landing and going on its path. Based on this, 

answer of the question how the navigation system in aircraft can be more 

robust is important. Experiments applied through research bring to come 

Simultaneous Localization and Mapping systems these have important role in 

the field of robotics. The fact that these systems contain a passive sensor such as 

a camera (safe against jamming attacks) and have proven application areas 

(drone, AR, VR) are very impressive. Therefore, in this study, the performances 

of the two most robust frameworks in the literature, VINS-Mono and ORB-

SLAM3, were compared and inquired about their applicability in aviation. ORB-

SLAM3 gave good results with the help of its new fast and high accurate IMU 

initialization technique. It was effective in the integration of the IMU by 

detecting the features, particularly in cases where the drone was moving 

quickly. But, it produces nearly 10 times higher error only in sequences where 

the environment is darker. However, the datasets used in research were indoor 

environments and generally contained spaces with a high number of features. 

Although some data sets that contain outdoor images found, the peformance 

could not be evaluated because the ground truth values were not measured 

correctly and were only used to run the algorithm. Since procuring our own 

hardware also requires a serious budget, we could not provide the 

environmental conditions and evaluate performance with indoor data sets as 

mentioned before. Considering these problems, before deciding on the correct 

algorithm and testing on aircraft, data sets containing outdoor environment 

should be created, parameters that will affect corresponding process such as 

less feature, more moving objects, and the parallax angle should be provided in 

detail. It would be better to explore and study algorithms in high speeds, high 

altitudes and different weather conditions such as rainy.   In addition to 

environmental problems, it will be a problem that the cameras on the aircraft 

generally do not stable pose in one direction and in helicopters, usually as a 
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result of vibration, they are often facing the sky and mountains where the 

features are low.  

 

The fact that algorithms produce different accuracy values at different 

conditions will cause them fall below admissible security levels for aviation. 

Therefore, we plan to develop and use the GPS independent navigation system, 

which we research in our future studies, as an auxiliary navigation tool from the 

moment it is cut, not assuming that GPS does not exist at all. A second solution is 

to consider using unmanned aerial vehicles, which hardware are closer to 

drones in their first use, and in low-altitude flights, we can limit the scope of our 

algorithm and find parts that can be improved more quickly.  

 

Beside the problems and possible solutions discussed above, ORB-SLAM3 seems 

better choice at the beginning of these researches, with feature matching in fast 

motion, tracking capability and successful optimizations in long flights. Finally, 

in the light of new technologies learning-based visual-inertial systems can 

become widespread and need to be focused on.   
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